Highly recruited brown adipose tissue does not in itself protect against obesity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37499977
PubMed Central
PMC10432997
DOI
10.1016/j.molmet.2023.101782
PII: S2212-8778(23)00116-3
Knihovny.cz E-zdroje
- Klíčová slova
- Adipostat, Beige adipose tissue, Body weight regulation, Diet-induced thermogenesis, Glucose homeostasis, UCP1,
- MeSH
- béžová tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- energetický metabolismus MeSH
- hnědá tuková tkáň * metabolismus MeSH
- lidé MeSH
- myši MeSH
- obezita * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity. METHODS: To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions. RESULTS: The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1. CONCLUSIONS: Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.
Zobrazit více v PubMed
Wu J., Cohen P., Spiegelman B.M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–250. PubMed PMC
Nedergaard J., Cannon B. The browning of white adipose tissue: some burning issues. Cell Metabol. 2014;20(3):396–407. PubMed
Okla M., Kim J., Koehler K., Chung S. Dietary factors promoting Brown and beige fat development and thermogenesis. Adv Nutr. 2017;8(3):473–483. PubMed PMC
Reynes B., Palou M., Rodriguez A.M., Palou A. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics. Front Physiol. 2018;9:1908. PubMed PMC
Di Maio G., Alessio N., Peluso G., Perrotta S., Monda M., Di Bernardo G. Molecular and physiological effects of browning agents on white adipocytes from bone marrow mesenchymal stromal cells. Int J Mol Sci. 2022;23(20) PubMed PMC
Nedergaard J., Cannon B. Diet-induced thermogenesis: principles and pitfalls. Methods Mol Biol. 2022;2448:177–202. PubMed
Sidossis L., Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125(2):478–486. PubMed PMC
von Essen G., Lindsund E., Cannon B., Nedergaard J. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. Am J Physiol Endocrinol Metab. 2017;313(5):E515–E527. PubMed
Cannon B., Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(Pt 2):242–253. PubMed
Virtue S., Vidal-Puig A. Assessment of brown adipose tissue function. Front Physiol. 2013;4:128. PubMed PMC
Desautels M., Dulos R.A., Mozaffari B. Selective loss of uncoupling protein from mitochondria of surgically denervated brown adipose tissue of cold-acclimated mice. Biochem Cell Biol. 1986;64:1125–1134. PubMed
Puigserver P., Herron D., Gianotti M., Palou A., Cannon B., Nedergaard J. Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem J. 1992;284(Pt 2):393–398. PubMed PMC
Petrovic N., Walden T.B., Shabalina I.G., Timmons J.A., Cannon B., Nedergaard J. Chronic peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic Brown adipocytes. J Biol Chem. 2010;285(10):7153–7164. PubMed PMC
Ishibashi J., Seale P. Medicine. Beige can be slimming. Science. 2010;328(5982):1113–1114. PubMed PMC
Shabalina I.G., Petrovic N., de Jong J.M., Kalinovich A.V., Cannon B., Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013;5(5):1196–1203. PubMed
Kajimura S., Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol. 2014;76:225–249. PubMed PMC
Peirce V., Carobbio S., Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83. PubMed
Giordano A., Frontini A., Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov. 2016;15(6):405–424. PubMed
Golozoubova V., Hohtola E., Matthias A., Jacobsson A., Cannon B., Nedergaard J. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. Faseb J. 2001;15:2048–2050. PubMed
Kazak L., Chouchani E.T., Stavrovskaya I.G., Lu G.Z., Jedrychowski M.P., Egan D.F., et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A. 2017;114(30):7981–7986. PubMed PMC
Keipert S., Kutschke M., Ost M., Schwarzmayr T., van Schothorst E.M., Lamp D., et al. Long-term cold adaptation does not require FGF21 or UCP1. Cell Metabol. 2017;26(2):437–446 e5. PubMed
Feldmann H.M., Golozoubova V., Cannon B., Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metabol. 2009;9(2):203–209. PubMed
Rowland L.A., Maurya S.K., Bal N.C., Kozak L., Periasamy M. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another. Obesity. 2016;24(7):1430–1433. PubMed PMC
Winn N.C., Vieira-Potter V.J., Gastecki M.L., Welly R.J., Scroggins R.J., Zidon T.M., et al. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice. Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R74–R84. PubMed PMC
Nedergaard J., von Essen G., Cannon B. Brown adipose tissue: can it keep us slim? A discussion of the evidence for and against the existence of diet-induced thermogenesis in mice and men. Phil Trans B. 2023 000. PubMed PMC
Liu X., Rossmeisl M., McClaine J., Kozak L.P. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest. 2003;111:399–407. PubMed PMC
Keipert S., Lutter D., Schroeder B.O., Brandt D., Stahlman M., Schwarzmayr T., et al. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nat Commun. 2020;11(1):624. PubMed PMC
Hankir M.K., Cowley M.A., Fenske W.K. A BAT-centric approach to the treatment of diabetes: turn on the brain. Cell Metabol. 2016;24(1):31–40. PubMed
Olsen J.M., Csikasz R.I., Dehvari N., Lu L., Sandstrom A., Oberg A.I., et al. beta3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol Metabol. 2017;6(6):611–619. PubMed PMC
Hankir M.K., Kranz M., Keipert S., Weiner J., Andreasen S.G., Kern M., et al. Dissociation between Brown adipose tissue (18)F-FDG uptake and thermogenesis in uncoupling protein 1-deficient mice. J Nucl Med : Official Publication, Society of Nuclear Medicine. 2017;58(7):1100–1103. PubMed
Nedergaard J., Lindberg O. Norepinephrine-stimulated fatty-acid release and oxygen consumption in isolated hamster brown-fat cells. Influence of buffers, albumin, insulin and mitochondrial inhibitors. Eur J Biochem. 1979;95(1):139–145. PubMed
de Jong J.M.A., Sun W., Pires N.D., Frontini A., Balaz M., Jespersen N.Z., et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat. Metabol. 2019;1:830–843. PubMed
Fischer A.W., Schlein C., Cannon B., Heeren J., Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316(3):E487–E503. PubMed PMC
Foellmi-Adams L.A., Wyse B.M., Herron D., Nedergaard J., Kletzien R.F. Induction of uncoupling protein in brown adipose tissue. Synergy between norepinephrine and pioglitazone, an insulin-sensitizing agent. Biochem Pharmacol. 1996;52:693–701. PubMed
Sell H., Berger J.P., Samson P., Castriota G., Lalonde J., Deshaies Y., et al. Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology. 2004;145:3925–3934. PubMed
Nedergaard J., Petrovic N., Lindgren E.M., Jacobsson A., Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta. 2005;1740(2):293–304. PubMed
Valdivia L.F.G., Castro E., Eichler R., Moreno M.F., de Sousa E., Jardim G.F.R., et al. Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice. Am J Physiol Endocrinol Metab. 2023;324(4):E358–E373. PubMed
Shabalina I.G., Ost M., Petrovic N., Vrbacky M., Nedergaard J., Cannon B. Uncoupling protein-1 is not leaky. Biochim Biophys Acta. 2010;1797(6–7):773–784. PubMed
Matthias A., Ohlson K.B., Fredriksson J.M., Jacobsson A., Nedergaard J., Cannon B. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem. 2000;275(33):25073–25081. PubMed
Golozoubova V., Cannon B., Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis, American journal of physiology. Cell physiology. 2006;291:E350–E357. PubMed
Kennedy G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953;140:578–596. 901. PubMed
Keesey R.E., Hirvonen M.D. Body weight set-points: determination and adjustment. J Nutr. 1997;127(9):1875S–1883S. PubMed
Fruhbeck G., Gomez-Ambrosi J. Rationale for the existence of additional adipostatic hormones. Faseb J. 2001;15(11):1996–2006. PubMed
Cannon B., Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc. 2009;68(4):401–407. PubMed
Evans M.C., Lord R.A., Anderson G.M. Multiple leptin signalling pathways in the control of metabolism and fertility: a means to different ends? Int J Mol Sci. 2021;22(17) PubMed PMC
Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–770. PubMed
White C.L., Purpera M.N., Ballard K., Morrison C.D. Decreased food intake following overfeeding involves leptin-dependent and leptin-independent mechanisms. Physiol Behav. 2010;100(4):408–416. PubMed PMC
Jansson J.O., Palsdottir V., Hagg D.A., Schele E., Dickson S.L., Anesten F., et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc Natl Acad Sci U S A. 2018;115(2):427–432. PubMed PMC
Ravussin Y., Edwin E., Gallop M., Xu L., Bartolome A., Kraakman M.J., et al. Evidence for a non-leptin system that defends against weight gain in overfeeding. Cell Metabol. 2018;28(2):289–299 e5. PubMed PMC
Bake T., Peris-Sampedro F., Waczek Z., Ohlsson C., Palsdottir V., Jansson J.O., et al. The gravitostat protects diet-induced obese rats against fat accumulation and weight gain. J Neuroendocrinol. 2021;33(8) PubMed
Speakman J.R., Levitsky D.A., Allison D.B., Bray M.S., de Castro J.M., Clegg D.J., et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis model mech. 2011;4(6):733–745. PubMed PMC
Speakman J.R. Why lipostatic set point systems are unlikely to evolve. Mol Metabol. 2018;7:147–154. PubMed PMC
Pelleymounter M.A., Cullen M.J., Baker M.B., Hecht R., Winters D., Boone T., et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–543. PubMed
Fischer A.W., Hoefig C.S., Abreu-Vieira G., de Jong J.M.A., Petrovic N., Mittag J., et al. Leptin raises defended body temperature without activating thermogenesis. Cell Rep. 2016;14(7):1621–1631. PubMed
Fischer A.W., Cannon B., Nedergaard J., Leptin Is it thermogenic? Endocr Rev. 2020;41(2):232. PubMed PMC
Virtue S., Even P., Vidal-Puig A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metabol. 2012;16(5):665–671. PubMed PMC
Shemano I., Nickerson M. Effect of ambient temperature on thermal responses to drugs. Can J Biochem Physiol. 1958;36(12):1243–1249. PubMed
Goldgof M., Xiao C., Chanturiya T., Jou W., Gavrilova O., Reitman M.L. The chemical uncoupler 2,4-dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality. J Biol Chem. 2014;289(28):19341–19350. PubMed PMC
Fischer A.W., Cannon B., Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: An experimental study. Mol Metabol. 2018;7:161–170. doi: 10.1016/j.molmet.2017.10.009. Epub 2017 Oct 31. PMID: 29122558. PubMed DOI PMC
de Jong J.M.A., Sun W., Pires N.D., Frontini A., Balaz M., Jespersen N.Z., et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab. 2019;1(8):830–843. doi: 10.1038/s42255-019-0101-4. Epub 2019 Aug 19. PMID: 32694768. PubMed DOI