• This record comes from PubMed

The Effects of Immunosuppressive Drugs on the Characteristics and Functional Properties of Bone Marrow-Derived Stem Cells Isolated from Patients with Diabetes Mellitus and Peripheral Arterial Disease

. 2023 Jun 30 ; 11 (7) : . [epub] 20230630

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
304321 Grant Agency of the Charles University
Project No. LX22NPO5104 Charles University and National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES) - funded by the European Union Next Gener-ation EU.

Links

PubMed 37509511
PubMed Central PMC10377428
DOI 10.3390/biomedicines11071872
PII: biomedicines11071872
Knihovny.cz E-resources

BACKGROUND: Diabetic patients (DPs) with foot ulcers can receive autologous cell therapy (ACT) as a last therapeutic option. Even DPs who have undergone organ transplantation and are using immunosuppressive (IS) drugs can be treated by ACT. The aim of our study was to analyze the effects of IS drugs on the characteristics of bone marrow-derived stem cells (BM-MSCs). METHODS: The cells were isolated from the bone marrow of DPs, cultivated for 14-18 days, and phenotypically characterized using flow cytometry. These precursor cells were cultured in the presence of various IS drugs. The impact of IS drugs on metabolic activity was measured using a WST-1 assay, and the expression of genes for immunoregulatory molecules was detected through RT-PCR. Cell death was analyzed through the use of flow cytometry, and the production of cytokines was determined by ELISA. RESULTS: The mononuclear fraction of cultured cells contained mesenchymal stem cells (CD45-CD73+CD90+CD105+), myeloid angiogenic cells (CD45+CD146-), and endothelial colony-forming cells (CD45-CD146+). IS drugs inhibited metabolic activity, the expression of genes for immunoregulatory molecules, the production of cytokines, and the viability of the cells. CONCLUSIONS: The results indicate that IS drugs in a dose-dependent manner had a negative impact on the properties of BM-MSCs used to treat ischemic diabetic foot ulcers, and that these drugs could affect the therapeutic potential of BM-MSCs.

See more in PubMed

Thorud J.C., Plemmons B., Buckley C.J., Shibuya N., Jupiter D.C. Mortality after nontraumatic major amputation among patients with diabetes and peripheral vascular disease: A systematic review. J. Foot Ankle Surg. 2016;55:591–599. doi: 10.1053/j.jfas.2016.01.012. PubMed DOI

Nasteska D., Viloria K., Everett L., Hodson D.J. Informing β-cell regeneration strategies using studies of heterogeneity. Mol. Metab. 2019;27:S49–S59. doi: 10.1016/j.molmet.2019.06.004. PubMed DOI PMC

Harding J.L., Pavkov M.E., Magliano D.J., Shaw J.E., Gregg E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia. 2019;62:3–16. doi: 10.1007/s00125-018-4711-2. PubMed DOI

Huang D., Refaat M., Mohammedi K., Jayyousi A., Al Suwaidi J., Khalil C.A. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Res. Int. 2017;2017:7839101. doi: 10.1155/2017/7839101. PubMed DOI PMC

Avogaro A., Fadini G.P. Microvascular complications in diabetes: A growing concern for cardiologists. Int. J. Cardiol. 2019;291:29–35. doi: 10.1016/j.ijcard.2019.02.030. PubMed DOI

Dubský M., Jirkovská A., Bem R., Nemcová A., Fejfarová V., Jude E.B. Cell therapy of critical limb ischemia in diabetic patients—State of art. Diabetes Res. Clin. Pract. 2017;126:263–271. doi: 10.1016/j.diabres.2017.02.028. PubMed DOI

Ai M., Yan C.-F., Xia F.-C., Zhou S.-L., He J., Li C.-P. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy. 2016;18:712–724. doi: 10.1016/j.jcyt.2016.02.009. PubMed DOI

Dubský M., Jirkovská A., Bem R., Fejfarová V., Pagacová L., Nemcová A., Sixta B., Chlupac J., Peregrin J.H., Syková E., et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014;16:1733–1738. doi: 10.1016/j.jcyt.2014.08.010. PubMed DOI

Trounson A., McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 2015;17:11–22. doi: 10.1016/j.stem.2015.06.007. PubMed DOI

Zhang J., Zheng G., Wu L., Yang L.O., Li W. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz. J. Med. Biol. Res. 2014;47:886–894. doi: 10.1590/1414-431X20143765. PubMed DOI PMC

Bronckaers A., Hilkens P., Martens W., Gervois P., Ratajczak J., Struys T., Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther. 2014;143:181–196. doi: 10.1016/j.pharmthera.2014.02.013. PubMed DOI

Squillaro T., Peluso G., Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016;25:829–848. doi: 10.3727/096368915X689622. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Medina R.J., Barber C.L., Sabatier F., Dignat-George F., Melero-Martin J.M., Khosrotehrani K., Ohneda O., Randi A.M., Chan J.K.Y., Yamaguchi T., et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med. 2017;6:1316–1320. doi: 10.1002/sctm.16-0360. PubMed DOI PMC

Pyšná A., Bém R., Němcová A., Fejfarová V., Jirkovská A., Hazdrová J., Jude E.B., Dubský M. Endothelial progenitor cells biology in Diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Rev. Rep. 2019;15:157–165. doi: 10.1007/s12015-018-9863-4. PubMed DOI

Qu Y., Lin Q., Yuan Y., Sun Z., Li P., Wang F., Jiang H., Chen T. Cyclosporin A inhibits adipogenic differentiation and regulates immunomodulatory functions of murine mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2018;498:516–522. doi: 10.1016/j.bbrc.2018.03.012. PubMed DOI

Javorkova E., Vackova J., Hajkova M., Hermankova B., Zajicova A., Holan V., Krulova M. The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomed. Pharmacother. 2018;97:402–411. doi: 10.1016/j.biopha.2017.10.114. PubMed DOI

Ha D.-H., Yong C.S., Kim J.O., Jeong J.-H., Park J.-B. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. Mol. Med. Rep. 2016;14:69–76. doi: 10.3892/mmr.2016.5217. PubMed DOI PMC

Gabarre P., Loens C., Tamzali Y., Barrou B., Jaisser F., Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am. J. Transplant. 2021;22:1014–1030. doi: 10.1111/ajt.16836. PubMed DOI

Dobrek L. Drug-related urinary tract infections. Wiad. Lek. 2021;74:1728–1736. doi: 10.36740/WLek202107130. PubMed DOI

Kočí Z., Turnovcová K., Dubský M., Baranovičová L., Holáň V., Chudíčková M., Syková E., Kubinová S. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient’s distal limbs with critical ischemia. Cell Biochem. Funct. 2014;32:597–604. doi: 10.1002/cbf.3056. PubMed DOI

Verma M., Awdishu L., Lane J., Park K., Bahur B., Lwin W., McGee H., Steiner R., Finn P., Perkins D. Impact of single immunosuppressive drug withdrawal on lymphocyte immunoreactivity. J. Surg. Res. 2014;188:309–315. doi: 10.1016/j.jss.2013.11.1085. PubMed DOI PMC

Vitiello D., Neagoe P.-E., Sirois M.G., White M. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell. Mol. Immunol. 2015;12:40–52. doi: 10.1038/cmi.2014.24. PubMed DOI PMC

Nowak M., Tardivel S., Nguyen-Khoa T., Abreu S., Allaoui F., Fournier N., Chaminade P., Paul J., Lacour B. Mycophenolate Mofetil and Rapamycin Induce Apoptosis in the Human Monocytic U937 Cell Line through Two Different Pathways. J. Cell. Biochem. 2017;118:3480–3487. doi: 10.1002/jcb.26007. PubMed DOI

Fullerton B., Jeitler K., Seitz M., Horvath K., Berghold A., Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 Diabetes mellitus. Cochrane Database Syst. Rev. 2014:CD009122. doi: 10.1002/14651858.CD009122.pub2. PubMed DOI PMC

Forbes J.M., Cooper M.E. Mechanisms of Diabetic Complications. Physiol. Rev. 2013;93:137–188. doi: 10.1152/physrev.00045.2011. PubMed DOI

Kirana S., Stratmann B., Prante C., Prohaska W., Koerperich H., Lammers D., Gastens M.H., Quast T., Negrean M., Stirban O.A., et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int. J. Clin. Pract. 2012;66:384–393. doi: 10.1111/j.1742-1241.2011.02886.x. PubMed DOI

Bartsch T., Brehm M., Zeus T., Kögler G., Wernet P., Strauer B.E. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (The TAM-PAD study) Clin. Res. Cardiol. 2007;96:891–899. doi: 10.1007/s00392-007-0569-x. PubMed DOI

Tateishi-Yuyama E., Matsubara H., Murohara T., Ikeda U., Shintani S., Masaki H., Amano K., Kishimoto Y., Yoshimoto K., Akashi H., et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet. 2002;360:427–435. doi: 10.1016/S0140-6736(02)09670-8. PubMed DOI

Esato K., Hamano K., Li T.-S., Furutani A., Seyama A., Takenaka H., Zempo N. Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease. Cell Transplant. 2002;11:747–752. doi: 10.3727/000000002783985242. PubMed DOI

Li Z., Guo J., Chang Q., Zhang A. Paracrine Role for Mesenchymal Stem Cells in Acute Myocardial Infarction. Biol. Pharm. Bull. 2009;32:1343–1346. doi: 10.1248/bpb.32.1343. PubMed DOI

Magenta A., Florio M.C., Ruggeri M., Furgiuele S. Autologous cell therapy in diabetes-associated critical limb ischemia: From basic studies to clinical outcomes. Int. J. Mol. Med. 2021;48:173. doi: 10.3892/ijmm.2021.5006. PubMed DOI PMC

Velazquez O.C. Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J. Vasc. Surg. 2007;45((Suppl. A)):A39–A47. doi: 10.1016/j.jvs.2007.02.068. PubMed DOI PMC

Loomans C.J., de Koning E.J., Staal F.J., Rookmaaker M.B., Verseyden C., de Boer H.C., Verhaar M.C., Braam B., Rabelink T.J., van Zonneveld A.-J. Endothelial Progenitor Cell Dysfunction. Diabetes. 2004;53:195–199. doi: 10.2337/diabetes.53.1.195. PubMed DOI

Fadini G.P., Albiero M., de Kreutzenberg S.V., Boscaro E., Cappellari R., Marescotti M., Poncina N., Agostini C., Avogaro A. Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans. Diabetes Care. 2013;36:943–949. doi: 10.2337/dc12-1084. PubMed DOI PMC

Kornicka K., Houston J., Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy May Limit Their Potential Therapeutic Use. Stem Cell Rev. Rep. 2018;14:337–345. doi: 10.1007/s12015-018-9809-x. PubMed DOI PMC

Yan J., Liang J., Cao Y., El Akkawi M.M., Liao X., Chen X., Li C., Li K., Xie G., Liu H. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds. Stem Cell Res. Ther. 2021;12:220. doi: 10.1186/s13287-021-02288-8. PubMed DOI PMC

Cao Y., Gang X., Sun C., Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J. Diabetes Res. 2017;2017:9328347. doi: 10.1155/2017/9328347. PubMed DOI PMC

Tsuji W., Schnider J.T., McLaughlin M.M., Schweizer R., Zhang W., Solari M.G., Rubin J.P., Marra K.G., Plock J.A., Gorantla V.S. Effects of Immunosuppressive Drugs on Viability and Susceptibility of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells. Front. Immunol. 2015;6:131. doi: 10.3389/fimmu.2015.00131. PubMed DOI PMC

Eggenhofer E., Renner P., Soeder Y., Popp F.C., Hoogduijn M.J., Geissler E.K., Schlitt H.J., Dahlke M.H. Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transpl. Immunol. 2011;25:141–147. doi: 10.1016/j.trim.2011.06.002. PubMed DOI

Kato T. Biological roles of hepatocyte growth factor—Met signaling from genetically modified animals. Biomed. Rep. 2017;7:495–503. doi: 10.3892/br.2017.1001. PubMed DOI PMC

Zhang X., Wang H., Hao Z. A numerical bone regeneration model incorporating angiogenesis, considering oxygen-induced secretion of vascular endothelial growth factor and vascular remodeling. J. Biomech. 2021;127:110656. doi: 10.1016/j.jbiomech.2021.110656. PubMed DOI

Gschwandtner M., Derler R., Midwood K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior beyond Chemotaxis. Front. Immunol. 2019;10:2759. doi: 10.3389/fimmu.2019.02759. PubMed DOI PMC

Bernhard S., Hug S., Stratmann A.E.P., Erber M., Vidoni L., Knapp C.L., Thomaß B.D., Fauler M., Nilsson B., Ekdahl K.N., et al. Interleukin 8 Elicits Rapid Physiological Changes in Neutrophils That Are Altered by Inflammatory Conditions. J. Innate Immun. 2021;13:225–241. doi: 10.1159/000514885. PubMed DOI PMC

Kang S., Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021;53:1116–1123. doi: 10.1038/s12276-021-00649-0. PubMed DOI PMC

Dubský M., Fejfarová V., Bem R., Jirkovská A., Nemcová A., Sutoris K., Husáková J., Skibová J., Jude E.B. Main Factors Predicting Nonresponders to Autologous Cell Therapy for Critical Limb Ischemia in Patients with Diabetic Foot. Angiology. 2021;72:861–866. doi: 10.1177/00033197211005614. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...