The Effects of Immunosuppressive Drugs on the Characteristics and Functional Properties of Bone Marrow-Derived Stem Cells Isolated from Patients with Diabetes Mellitus and Peripheral Arterial Disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
304321
Grant Agency of the Charles University
Project No. LX22NPO5104
Charles University and National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES) - funded by the European Union Next Gener-ation EU.
PubMed
37509511
PubMed Central
PMC10377428
DOI
10.3390/biomedicines11071872
PII: biomedicines11071872
Knihovny.cz E-resources
- Keywords
- cell-based therapies, diabetes, diabetic foot ulcers, immunosuppressive drugs,
- Publication type
- Journal Article MeSH
BACKGROUND: Diabetic patients (DPs) with foot ulcers can receive autologous cell therapy (ACT) as a last therapeutic option. Even DPs who have undergone organ transplantation and are using immunosuppressive (IS) drugs can be treated by ACT. The aim of our study was to analyze the effects of IS drugs on the characteristics of bone marrow-derived stem cells (BM-MSCs). METHODS: The cells were isolated from the bone marrow of DPs, cultivated for 14-18 days, and phenotypically characterized using flow cytometry. These precursor cells were cultured in the presence of various IS drugs. The impact of IS drugs on metabolic activity was measured using a WST-1 assay, and the expression of genes for immunoregulatory molecules was detected through RT-PCR. Cell death was analyzed through the use of flow cytometry, and the production of cytokines was determined by ELISA. RESULTS: The mononuclear fraction of cultured cells contained mesenchymal stem cells (CD45-CD73+CD90+CD105+), myeloid angiogenic cells (CD45+CD146-), and endothelial colony-forming cells (CD45-CD146+). IS drugs inhibited metabolic activity, the expression of genes for immunoregulatory molecules, the production of cytokines, and the viability of the cells. CONCLUSIONS: The results indicate that IS drugs in a dose-dependent manner had a negative impact on the properties of BM-MSCs used to treat ischemic diabetic foot ulcers, and that these drugs could affect the therapeutic potential of BM-MSCs.
1st Faculty of Medicine Charles University 14021 Prague Czech Republic
Department of Cell Biology Faculty of Science Charles University 14021 Prague Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
See more in PubMed
Thorud J.C., Plemmons B., Buckley C.J., Shibuya N., Jupiter D.C. Mortality after nontraumatic major amputation among patients with diabetes and peripheral vascular disease: A systematic review. J. Foot Ankle Surg. 2016;55:591–599. doi: 10.1053/j.jfas.2016.01.012. PubMed DOI
Nasteska D., Viloria K., Everett L., Hodson D.J. Informing β-cell regeneration strategies using studies of heterogeneity. Mol. Metab. 2019;27:S49–S59. doi: 10.1016/j.molmet.2019.06.004. PubMed DOI PMC
Harding J.L., Pavkov M.E., Magliano D.J., Shaw J.E., Gregg E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia. 2019;62:3–16. doi: 10.1007/s00125-018-4711-2. PubMed DOI
Huang D., Refaat M., Mohammedi K., Jayyousi A., Al Suwaidi J., Khalil C.A. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Res. Int. 2017;2017:7839101. doi: 10.1155/2017/7839101. PubMed DOI PMC
Avogaro A., Fadini G.P. Microvascular complications in diabetes: A growing concern for cardiologists. Int. J. Cardiol. 2019;291:29–35. doi: 10.1016/j.ijcard.2019.02.030. PubMed DOI
Dubský M., Jirkovská A., Bem R., Nemcová A., Fejfarová V., Jude E.B. Cell therapy of critical limb ischemia in diabetic patients—State of art. Diabetes Res. Clin. Pract. 2017;126:263–271. doi: 10.1016/j.diabres.2017.02.028. PubMed DOI
Ai M., Yan C.-F., Xia F.-C., Zhou S.-L., He J., Li C.-P. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy. 2016;18:712–724. doi: 10.1016/j.jcyt.2016.02.009. PubMed DOI
Dubský M., Jirkovská A., Bem R., Fejfarová V., Pagacová L., Nemcová A., Sixta B., Chlupac J., Peregrin J.H., Syková E., et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014;16:1733–1738. doi: 10.1016/j.jcyt.2014.08.010. PubMed DOI
Trounson A., McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 2015;17:11–22. doi: 10.1016/j.stem.2015.06.007. PubMed DOI
Zhang J., Zheng G., Wu L., Yang L.O., Li W. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz. J. Med. Biol. Res. 2014;47:886–894. doi: 10.1590/1414-431X20143765. PubMed DOI PMC
Bronckaers A., Hilkens P., Martens W., Gervois P., Ratajczak J., Struys T., Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther. 2014;143:181–196. doi: 10.1016/j.pharmthera.2014.02.013. PubMed DOI
Squillaro T., Peluso G., Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016;25:829–848. doi: 10.3727/096368915X689622. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Medina R.J., Barber C.L., Sabatier F., Dignat-George F., Melero-Martin J.M., Khosrotehrani K., Ohneda O., Randi A.M., Chan J.K.Y., Yamaguchi T., et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med. 2017;6:1316–1320. doi: 10.1002/sctm.16-0360. PubMed DOI PMC
Pyšná A., Bém R., Němcová A., Fejfarová V., Jirkovská A., Hazdrová J., Jude E.B., Dubský M. Endothelial progenitor cells biology in Diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Rev. Rep. 2019;15:157–165. doi: 10.1007/s12015-018-9863-4. PubMed DOI
Qu Y., Lin Q., Yuan Y., Sun Z., Li P., Wang F., Jiang H., Chen T. Cyclosporin A inhibits adipogenic differentiation and regulates immunomodulatory functions of murine mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2018;498:516–522. doi: 10.1016/j.bbrc.2018.03.012. PubMed DOI
Javorkova E., Vackova J., Hajkova M., Hermankova B., Zajicova A., Holan V., Krulova M. The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomed. Pharmacother. 2018;97:402–411. doi: 10.1016/j.biopha.2017.10.114. PubMed DOI
Ha D.-H., Yong C.S., Kim J.O., Jeong J.-H., Park J.-B. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. Mol. Med. Rep. 2016;14:69–76. doi: 10.3892/mmr.2016.5217. PubMed DOI PMC
Gabarre P., Loens C., Tamzali Y., Barrou B., Jaisser F., Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am. J. Transplant. 2021;22:1014–1030. doi: 10.1111/ajt.16836. PubMed DOI
Dobrek L. Drug-related urinary tract infections. Wiad. Lek. 2021;74:1728–1736. doi: 10.36740/WLek202107130. PubMed DOI
Kočí Z., Turnovcová K., Dubský M., Baranovičová L., Holáň V., Chudíčková M., Syková E., Kubinová S. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient’s distal limbs with critical ischemia. Cell Biochem. Funct. 2014;32:597–604. doi: 10.1002/cbf.3056. PubMed DOI
Verma M., Awdishu L., Lane J., Park K., Bahur B., Lwin W., McGee H., Steiner R., Finn P., Perkins D. Impact of single immunosuppressive drug withdrawal on lymphocyte immunoreactivity. J. Surg. Res. 2014;188:309–315. doi: 10.1016/j.jss.2013.11.1085. PubMed DOI PMC
Vitiello D., Neagoe P.-E., Sirois M.G., White M. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell. Mol. Immunol. 2015;12:40–52. doi: 10.1038/cmi.2014.24. PubMed DOI PMC
Nowak M., Tardivel S., Nguyen-Khoa T., Abreu S., Allaoui F., Fournier N., Chaminade P., Paul J., Lacour B. Mycophenolate Mofetil and Rapamycin Induce Apoptosis in the Human Monocytic U937 Cell Line through Two Different Pathways. J. Cell. Biochem. 2017;118:3480–3487. doi: 10.1002/jcb.26007. PubMed DOI
Fullerton B., Jeitler K., Seitz M., Horvath K., Berghold A., Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 Diabetes mellitus. Cochrane Database Syst. Rev. 2014:CD009122. doi: 10.1002/14651858.CD009122.pub2. PubMed DOI PMC
Forbes J.M., Cooper M.E. Mechanisms of Diabetic Complications. Physiol. Rev. 2013;93:137–188. doi: 10.1152/physrev.00045.2011. PubMed DOI
Kirana S., Stratmann B., Prante C., Prohaska W., Koerperich H., Lammers D., Gastens M.H., Quast T., Negrean M., Stirban O.A., et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int. J. Clin. Pract. 2012;66:384–393. doi: 10.1111/j.1742-1241.2011.02886.x. PubMed DOI
Bartsch T., Brehm M., Zeus T., Kögler G., Wernet P., Strauer B.E. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (The TAM-PAD study) Clin. Res. Cardiol. 2007;96:891–899. doi: 10.1007/s00392-007-0569-x. PubMed DOI
Tateishi-Yuyama E., Matsubara H., Murohara T., Ikeda U., Shintani S., Masaki H., Amano K., Kishimoto Y., Yoshimoto K., Akashi H., et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet. 2002;360:427–435. doi: 10.1016/S0140-6736(02)09670-8. PubMed DOI
Esato K., Hamano K., Li T.-S., Furutani A., Seyama A., Takenaka H., Zempo N. Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease. Cell Transplant. 2002;11:747–752. doi: 10.3727/000000002783985242. PubMed DOI
Li Z., Guo J., Chang Q., Zhang A. Paracrine Role for Mesenchymal Stem Cells in Acute Myocardial Infarction. Biol. Pharm. Bull. 2009;32:1343–1346. doi: 10.1248/bpb.32.1343. PubMed DOI
Magenta A., Florio M.C., Ruggeri M., Furgiuele S. Autologous cell therapy in diabetes-associated critical limb ischemia: From basic studies to clinical outcomes. Int. J. Mol. Med. 2021;48:173. doi: 10.3892/ijmm.2021.5006. PubMed DOI PMC
Velazquez O.C. Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J. Vasc. Surg. 2007;45((Suppl. A)):A39–A47. doi: 10.1016/j.jvs.2007.02.068. PubMed DOI PMC
Loomans C.J., de Koning E.J., Staal F.J., Rookmaaker M.B., Verseyden C., de Boer H.C., Verhaar M.C., Braam B., Rabelink T.J., van Zonneveld A.-J. Endothelial Progenitor Cell Dysfunction. Diabetes. 2004;53:195–199. doi: 10.2337/diabetes.53.1.195. PubMed DOI
Fadini G.P., Albiero M., de Kreutzenberg S.V., Boscaro E., Cappellari R., Marescotti M., Poncina N., Agostini C., Avogaro A. Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans. Diabetes Care. 2013;36:943–949. doi: 10.2337/dc12-1084. PubMed DOI PMC
Kornicka K., Houston J., Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy May Limit Their Potential Therapeutic Use. Stem Cell Rev. Rep. 2018;14:337–345. doi: 10.1007/s12015-018-9809-x. PubMed DOI PMC
Yan J., Liang J., Cao Y., El Akkawi M.M., Liao X., Chen X., Li C., Li K., Xie G., Liu H. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds. Stem Cell Res. Ther. 2021;12:220. doi: 10.1186/s13287-021-02288-8. PubMed DOI PMC
Cao Y., Gang X., Sun C., Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J. Diabetes Res. 2017;2017:9328347. doi: 10.1155/2017/9328347. PubMed DOI PMC
Tsuji W., Schnider J.T., McLaughlin M.M., Schweizer R., Zhang W., Solari M.G., Rubin J.P., Marra K.G., Plock J.A., Gorantla V.S. Effects of Immunosuppressive Drugs on Viability and Susceptibility of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells. Front. Immunol. 2015;6:131. doi: 10.3389/fimmu.2015.00131. PubMed DOI PMC
Eggenhofer E., Renner P., Soeder Y., Popp F.C., Hoogduijn M.J., Geissler E.K., Schlitt H.J., Dahlke M.H. Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transpl. Immunol. 2011;25:141–147. doi: 10.1016/j.trim.2011.06.002. PubMed DOI
Kato T. Biological roles of hepatocyte growth factor—Met signaling from genetically modified animals. Biomed. Rep. 2017;7:495–503. doi: 10.3892/br.2017.1001. PubMed DOI PMC
Zhang X., Wang H., Hao Z. A numerical bone regeneration model incorporating angiogenesis, considering oxygen-induced secretion of vascular endothelial growth factor and vascular remodeling. J. Biomech. 2021;127:110656. doi: 10.1016/j.jbiomech.2021.110656. PubMed DOI
Gschwandtner M., Derler R., Midwood K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior beyond Chemotaxis. Front. Immunol. 2019;10:2759. doi: 10.3389/fimmu.2019.02759. PubMed DOI PMC
Bernhard S., Hug S., Stratmann A.E.P., Erber M., Vidoni L., Knapp C.L., Thomaß B.D., Fauler M., Nilsson B., Ekdahl K.N., et al. Interleukin 8 Elicits Rapid Physiological Changes in Neutrophils That Are Altered by Inflammatory Conditions. J. Innate Immun. 2021;13:225–241. doi: 10.1159/000514885. PubMed DOI PMC
Kang S., Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021;53:1116–1123. doi: 10.1038/s12276-021-00649-0. PubMed DOI PMC
Dubský M., Fejfarová V., Bem R., Jirkovská A., Nemcová A., Sutoris K., Husáková J., Skibová J., Jude E.B. Main Factors Predicting Nonresponders to Autologous Cell Therapy for Critical Limb Ischemia in Patients with Diabetic Foot. Angiology. 2021;72:861–866. doi: 10.1177/00033197211005614. PubMed DOI