Effect of Imperial Smelting Process Slag Addition in Self Compacting Concrete Concrete on the Efficiency of Electrochemical Chloride Extraction
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37512432
PubMed Central
PMC10383419
DOI
10.3390/ma16145159
PII: ma16145159
Knihovny.cz E-resources
- Keywords
- ISP slag, chloride extraction, concrete microstructure, corrosion of reinforcement, diffusion process, linear polarization resistance, migration process, scanning electron microscope,
- Publication type
- Journal Article MeSH
This paper presents the analysis of how ISP slag addition affects the effectiveness of chloride extraction from self-compacting concrete. Corrosion processes were initiated by chloride ions added to concrete by the method accelerated with an electric field. Corrosion of reinforcement was monitored using the method of linear polarization resistance (LPR). Polarization measurements of steel reinforcement and chloride profiles were analysed to evaluate the effectiveness of electrochemical extraction. Microstructural analysis was conducted on a specimen of concrete after migration and extraction of chlorides. The presence of chloride ions and the application of an electric field during migration were tested with respect to the changed microstructure of concrete evaluated on the basis of image analysis using a scanning electron microscope (SEM). The research contributes to a better understanding of the corrosion processes caused by the presence of chloride ions in concretes in which ISP slag was used as a substitute for sand in various amounts. Thanks to the treatments of concrete with already corroding reinforcement bars, it can be concluded that the moderate replacement of sand with ISP slag limited to 25% allows for the effective inhibition of corrosion processes taking place in these concretes. However, it is not possible to completely withdraw already started corrosion processes in steel. The observations of the microstructure of concrete in which sand was completely replaced with ISP slag indicate that after prolonged use of the chloride extraction process, we can expect a change in the microstructure and the formation of ettringite, which may cause the concrete structure to burst. The obtained information will contribute to the development of modelling methods for chloride ion extraction from a wide range of currently used concretes.
See more in PubMed
Ramezanianpour A.A., Ghahari S.A., Esmaeili M. Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete. Constr. Build. Mater. 2014;58:138–146. doi: 10.1016/j.conbuildmat.2014.01.102. DOI
Yang C.C. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials. Cem. Concr. Res. 2006;36:1304–1311. doi: 10.1016/j.cemconres.2006.03.007. DOI
Marcotte T.D., Hansson C.M., Hope B.B. The Effect of the Electrochemical Chloride Extraction Treatment on Steel-Reinforced Mortar Part II: Microstructural Characterization. Volume 29 Elsevier; Amsterdam, The Netherlands: 1999.
Siegwart M., Lyness J.F., McFarland B.J. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions. Cem. Concr. Res. 2003;33:1211–1221. doi: 10.1016/S0008-8846(03)00047-4. DOI
ACI 201.2R-08. American Concrete Institute; Farmington Hills, MI, USA: 2008. Guide to Durable Concrete.
ACI Committee 357 Anon Revisions to: Guide for the Design and Construction of Fixed Offshore Concrete Structures. J. Am. Concr. Inst. 1984;81:632–639. doi: 10.14359/10711. DOI
Beton Część 1: Wymagania, Właściwości i Zgodność. Polish Committee for Standardization; Warsaw, Poland: 2004. pp. 1–70. (In Polish)
Part 1, Structural Use of Concrete–Code of Practice for Design and Construction. Volume 38 British Standards Institute; London, UK: 1985.
Protection of Metals in Concrete against Corrosion. ACI Committee 222; Farmington Hills, MI, USA: 2001. pp. 1–41.
Xu J., Zhan P., Zhou W., Zuo J., Shah S.P., He Z. Design and assessment of eco-friendly ultra-high performance concrete with steel slag powder and recycled glass powder. Powder Technol. 2023;419:118356. doi: 10.1016/j.powtec.2023.118356. DOI
Zhan P., Xu J., Wang J., Zuo J., He Z. Structural supercapacitor electrolytes based on cementitious composites containing recycled steel slag and waste glass powders. Cem. Concr. Compos. 2023;137:104924. doi: 10.1016/j.cemconcomp.2022.104924. DOI
Huang H., Ye G., Damidot D. Cement and Concrete Research Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cem. Concr. Res. 2014;60:68–82. doi: 10.1016/j.cemconres.2014.03.010. DOI
Alwaeli M. Application of granulated lead—Zinc slag in concrete as an opportunity to save natural resources. Radiat. Phys. Chem. 2013;83:54–60. doi: 10.1016/j.radphyschem.2012.09.024. DOI
Weeks C., Hand R.J., Sharp J.H. Cement & Concrete Composites Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008;30:970–978. doi: 10.1016/j.cemconcomp.2008.07.005. DOI
Kanneboina Y.Y., Kabeer KS A., Bisht K. Valorization of lead and zinc slags for the production of construction materials—A review for future research direction. Constr. Build. Mater. 2023;367:130314. doi: 10.1016/j.conbuildmat.2023.130314. DOI
Alwaeli M. Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod. 2017;166:157–162. doi: 10.1016/j.jclepro.2017.07.203. DOI
Morrison C., Hooper R., Lardner K. The use of ferro-silicate slag from ISF zinc production as a sand replacement in concrete. Cem. Concr. Res. 2003;33:2085–2089. doi: 10.1016/S0008-8846(03)00234-5. DOI
Alex T.C., Kalinkin A.M., Nath S.K., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V., Kumar S. Utilization of zinc slag through geopolymerization: Influence of milling atmosphere. Int. J. Miner. Process. 2013;123:102–107. doi: 10.1016/j.minpro.2013.06.001. DOI
Xia M., Muhammad F., Zeng L., Li S., Huang X., Jiao B., Shiau Y., Li D. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 2019;209:1206–1215. doi: 10.1016/j.jclepro.2018.10.265. DOI
Zhang P., Muhammad F., Yu L., Xia M., Lin H., Huang X., Jiao B., Shiau Y., Li D. Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials. Constr. Build. Mater. 2020;249:118756. doi: 10.1016/j.conbuildmat.2020.118756. DOI
Saedi A., Jamshidi-zanjani A., Khodadadi A., Mohseni M., Nejati H. Utilization of lead—Zinc mine tailings as cement substitutes in concrete construction: Effect of sulfide content. J. Build. Eng. 2022;57:104865. doi: 10.1016/j.jobe.2022.104865. DOI
Chen W., Peng R., Straub C., Yuan B. Promoting the performance of one-part alkali-activated slag using fine lead-zinc mine tailings. Constr. Build. Mater. 2020;236:117745. doi: 10.1016/j.conbuildmat.2019.117745. DOI
Tripathi B., Chaudhary S. Performance based evaluation of ISF slag as a substitute of natural sand in concrete. J. Clean. Prod. 2016;112:672–683. doi: 10.1016/j.jclepro.2015.07.120. DOI
Szweda Z., Ponikiewski T., Katzer J. A study on replacement of sand by granulated ISP slag in SCC as a factor formatting its durability against chloride ions. J. Clean. Prod. 2017;156:569–576. doi: 10.1016/j.jclepro.2017.04.072. DOI
De Almeida Souza L.R., de Medeiros M.H.F., Pereira E., Capraro A.P.B. Electrochemical chloride extraction: Efficiency and impact on concrete containing 1% of NaCl. Constr. Build. Mater. 2017;145:435–444. doi: 10.1016/j.conbuildmat.2017.04.010. DOI
Szweda Z., Jaśniok T., Jaśniok M. Evaluation of the effectiveness of electrochemical chloride extraction from concrete on the basis of testing reinforcement polarization and chloride concentration. Ochr. Przed Korozją. 2018;61:3–9.
Melara E.K., Mendes A.Z., Andreczevecz N.C., Bragança M.O.G.P., Carrera G.T., Medeiros-Junior R.A. Monitoring by electrochemical impedance spectroscopy of mortars subjected to ingress and extraction of chloride ions. Constr. Build. Mater. 2020;242:118001. doi: 10.1016/j.conbuildmat.2020.118001. DOI
Chen X., Fu F., Wang H., Liang Q., Yu A., Qian K., Chen P. A multi-phase mesoscopic simulation model for the long-term chloride ingress and electrochemical chloride extraction. Constr. Build. Mater. 2021;270:121826. doi: 10.1016/j.conbuildmat.2020.121826. DOI
Zhu Z., Chu H., Guo M.Z., Shen M., Jiang L., Yu L. Effect of silica fume and fly ash on the stability of bound chlorides in cement mortar during electrochemical chloride extraction. Constr. Build. Mater. 2020;256:119481. doi: 10.1016/j.conbuildmat.2020.119481. DOI
Jin Z., Hou D., Zhao T. Electrochemical chloride extraction (ECE) based on the high performance conductive cement-based composite anode. Constr. Build. Mater. 2018;173:149–159. doi: 10.1016/j.conbuildmat.2018.03.241. DOI
Mao J., Yu K., Xu Y., Wu X., Jin W., Xu C., Pan C. Experimental research on the distribution of chloride ion migration in concrete cover during electrochemical chloride extraction treatment. Int. J. Electrochem. Sci. 2016;11:4076–4083. doi: 10.1016/S1452-3981(23)17460-8. DOI
Miranda J.M., Cobo A., Otero E., González J.A. Limitations and advantages of electrochemical chloride removal in corroded reinforced concrete structures. Cem. Concr. Res. 2007;37:596–603. doi: 10.1016/j.cemconres.2007.01.005. DOI
Chang C.C., Yeih W., Chang J.J., Huang R. Effects of stirrups on electrochemical chloride removal efficiency. Constr. Build. Mater. 2014;68:692–700. doi: 10.1016/j.conbuildmat.2014.06.091. DOI
Nguyen T.H.Y., Tran V.M., Pansuk W., Cao N.T., Bui V.H.L. Electrochemical chloride extraction on reinforced concrete contaminated external chloride: Efficiencies of intermittent applications and impacts on hydration products. Cem. Concr. Compos. 2021;121:104076. doi: 10.1016/j.cemconcomp.2021.104076. DOI
Swamy R.N., McHugh S. Effectiveness and structural implications of electrochemical chloride extraction from reinforced concrete beams. Cem. Concr. Compos. 2006;28:722–733. doi: 10.1016/j.cemconcomp.2006.05.012. DOI
Brito P.S.D. Monitoring of Electrochemical Chloride Extraction (Ece) From Reinforced Concrete Elements. J. Mater. Sci. Eng. Adv. Technol. 2013;8:1–26.
Muralidharan S., Ha T.H., Bae J.H., Ha Y.C., Lee H.G., Kim D.K. A promising potential embeddable sensor for corrosion monitoring application in concrete structures. Meas. J. Int. Meas. Confed. 2007;40:600–606. doi: 10.1016/j.measurement.2006.09.008. DOI
Katzer J. Median diameter as a grading characteristic for fine aggregate cement composite designing. Constr. Build. Mater. 2012;35:884–887. doi: 10.1016/j.conbuildmat.2012.04.050. DOI
Adamczyk Z., Nowińska K., Melaniuk-Wolny E., Szewczenko J. Variation of the content of accompanying elements in galena in pyrometallurgical process of zinc and lead production. Acta Montan. Slovaca. 2013;18:158–163.
Szweda Z., Gołaszewski J., Ghosh P., Lehner P., Konečný P. Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration. Materials. 2023;16:637. doi: 10.3390/ma16020637. PubMed DOI PMC
Szweda Z., Zybura A. Theoretical model and experimental tests on chloride diffusion and migration processes in concrete. Procedia Eng. 2013;57:1121–1130.
Kayyali O.A., Haque M.N. The C1−/OH− ratio in chloride-contaminated concrete—A most important criterion. Mag. Concr. Res. 1995;47:235–242. doi: 10.1680/macr.1995.47.172.235. DOI
Scully J.R. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 2000;56:199–218. doi: 10.5006/1.3280536. DOI
Szweda Z. Estimating coefficient of chloride extraction from concrete. Ochr. Przed Koroz. 2019;12:393–398. doi: 10.15199/40.2019.12.1. DOI
Szweda Z. Evaluating the Impact of Concrete Design on the Effectiveness of the Electrochemical Chloride Extraction Process. Materials. 2023;16:666. doi: 10.3390/ma16020666. PubMed DOI PMC
Szweda Z., Jaśniok T., Jaśniok M. Ocena skuteczności zabiegu elektrochemicznej ekstrakcji chlorków z betonu na podstawie badań polaryzacyjnych zbrojenia i stężenia chlorków. Ochr. Przed Korozją. 2018;1:5–11. doi: 10.15199/40.2018.1.1. DOI
Raczkiewicz W. Use of polypropylene fi bres to increase the resistance of reinforcement to chloride corrosion in concretes. Sci. Eng. Compos. Mater. 2021;22:555–567. doi: 10.1515/secm-2021-0053. DOI
Ki Beom K., Pil Hwang J., Yong Ann K. Influence of cementitious binder on chloride removal under. Constr. Build. Mater. 2016;104:191–197. doi: 10.1016/j.conbuildmat.2015.12.052. DOI
The Influence of Corrosion Processes on the Degradation of Concrete Cover