Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22-73-10091
Russian Science Foundation grant
PubMed
37571146
PubMed Central
PMC10422511
DOI
10.3390/polym15153252
PII: polym15153252
Knihovny.cz E-resources
- Keywords
- PVDF, exciton, hydrogen bond, photocatalysis, piezophocatalysis, salt, visible light,
- Publication type
- Journal Article MeSH
In this study, polyvinylidene fluoride (PVDF) fibers doped with hydrated calcium nitrate were prepared using electrospinning. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), optical spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Raman, and photoluminescence (PL) spectroscopy. The results are complementary and confirm the presence of chemical hydrogen bonding between the polymer and the dopant. Additionally, there was a significant increase in the proportion of the electroactive polar beta phase from 72 to 86%. It was shown that hydrogen bonds acted as a transport pathway for electron capture by the conjugated salt, leading to more than a three-fold quenching of photoluminescence. Furthermore, the optical bandgap of the composite material narrowed to the range of visible light energies. For the first time, it the addition of the salt reduced the energy of the PVDF exciton by a factor of 17.3, initiating photocatalytic activity. The calcium nitrate-doped PVDF exhibited high photocatalytic activity in the degradation of methylene blue (MB) under both UV and visible light (89 and 44%, respectively). The reaction rate increased by a factor of 2.4 under UV and 3.3 under visible light during piezophotocatalysis. The catalysis experiments proved the efficiency of the membrane design and mechanisms of catalysis are suggested. This study offers insight into the nature of chemical bonds in piezopolymer composites and potential opportunities for their use.
Central European Institute of Technology BUT Purkyňova 656 123 61200 Brno Czech Republic
Smart Materials Laboratory Dagestan State University St M Gadjieva 43 a 367015 Makhachkala Russia
See more in PubMed
Tran N.N., Escribà-Gelonch M., Sarafraz M.M., Pho Q.H., Sagadevan S., Hessel V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind. Eng. Chem. Res. 2023;62:1195–1214. doi: 10.1021/acs.iecr.2c03471. DOI
De Andrade J.R., Oliveira M.F., Da Silva M.G.C., Vieira M.G.A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018;57:3103–3127. doi: 10.1021/acs.iecr.7b05137. DOI
Alkhadra M.A., Su X., Suss M.E., Tian H., Guyes E.N., Shocron A.N., Conforti K.M., De Souza J.P., Kim N., Tedesco M., et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022;122:13547–13635. doi: 10.1021/acs.chemrev.1c00396. PubMed DOI PMC
Kokkinos P., Venieri D., Mantzavinos D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021;13:283–302. doi: 10.1007/s12560-021-09481-1. PubMed DOI PMC
Ma D., Yi H., Lai C., Liu X., Huo X., An Z., Li L., Fu Y., Li B., Zhang M., et al. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere. 2021;275:130104. doi: 10.1016/j.chemosphere.2021.130104. PubMed DOI
Liu P., Wu Z., Abramova A.V., Cravotto G. Sonochemical Processes for the Degradation of Antibiotics in Aqueous Solutions: A Review. Ultrason. Sonochem. 2021;74:105566. doi: 10.1016/j.ultsonch.2021.105566. PubMed DOI PMC
Kumar A., Rana A., Sharma G., Naushad M., Dhiman P., Kumari A., Stadler F.J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019;290:111177. doi: 10.1016/j.molliq.2019.111177. DOI
Chauhan R., Dinesh G.K., Alawa B., Chakma S. A Critical Analysis of Sono-Hybrid Advanced Oxidation Process of Ferrioxalate System for Degradation of Recalcitrant Pollutants. Chemosphere. 2021;277:130324. doi: 10.1016/j.chemosphere.2021.130324. PubMed DOI
Babuponnusami A., Muthukumar K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014;2:557–572. doi: 10.1016/j.jece.2013.10.011. DOI
Wang N., Zheng T., Zhang G., Wang P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016;4:762–787. doi: 10.1016/j.jece.2015.12.016. DOI
Ramos M.D.N., Santana C.S., Velloso C.C.V., da Silva A.H.M., Magalhães F., Aguiar A. A Review on the Treatment of Textile Industry Effluents through Fenton Processes. Process Saf. Environ. Prot. 2021;155:366–386. doi: 10.1016/j.psep.2021.09.029. DOI
Verinda S.B., Muniroh M., Yulianto E., Maharani N., Gunawan G., Amalia N.F., Hobley J., Usman A., Nur M. Degradation of Ciprofloxacin in Aqueous Solution Using Ozone Microbubbles: Spectroscopic, Kinetics, and Antibacterial Analysis. Heliyon. 2022;8:e10137. doi: 10.1016/j.heliyon.2022.e10137. PubMed DOI PMC
Moradi M., Elahinia A., Vasseghian Y., Dragoi E.N., Omidi F., Mousavi Khaneghah A. A Review on Pollutants Removal by Sono-Photo -Fenton Processes. J. Environ. Chem. Eng. 2020;8:104330. doi: 10.1016/j.jece.2020.104330. DOI
Lv S., Du Y., Wu F., Cai Y., Zhou T. Review on LSPR Assisted Photocatalysis: Effects of Physical Fields and Opportunities in Multifield Decoupling. Nanoscale Adv. 2022;4:2608–2631. doi: 10.1039/D2NA00140C. PubMed DOI PMC
Retamoso C., Escalona N., González M., Barrientos L., Allende-González P., Stancovich S., Serpell R., Fierro J.L.G., Lopez M. Effect of Particle Size on the Photocatalytic Activity of Modified Rutile Sand (TiO2) for the Discoloration of Methylene Blue in Water. J. Photochem. Photobiol. A Chem. 2019;378:136–141. doi: 10.1016/j.jphotochem.2019.04.021. DOI
Wang H., Lu J. A Review on Particle Size Effect in Metal-Catalyzed Heterogeneous Reactions. Chin. J. Chem. 2020;38:1422–1444. doi: 10.1002/cjoc.202000205. DOI
Ahmad I., Zou Y., Yan J., Liu Y., Shukrullah S., Naz M.Y., Hussain H., Khan W.Q., Khalid N.R. Semiconductor Photocatalysts: A Critical Review Highlighting the Various Strategies to Boost the Photocatalytic Performances for Diverse Applications. Adv. Colloid Interface Sci. 2023;311:102830. doi: 10.1016/j.cis.2022.102830. PubMed DOI
Joseph A., Vijayanandan A. Review on Support Materials Used for Immobilization of Nano-Photocatalysts for Water Treatment Applications. Inorganica Chim. Acta. 2023;545:121284. doi: 10.1016/j.ica.2022.121284. DOI
Li X., Chen Y., Tao Y., Shen L., Xu Z., Bian Z., Li H. Challenges of Photocatalysis and Their Coping Strategies. Chem. Catal. 2022;2:1315–1345. doi: 10.1016/j.checat.2022.04.007. DOI
Jacinto M.J., Ferreira L.F., Silva V.C. Magnetic Materials for Photocatalytic Applications—A Review. J. Solgel. Sci. Technol. 2020;96:1–14. doi: 10.1007/s10971-020-05333-9. DOI
Zakria H.S., Othman M.H.D., Kamaludin R., Sheikh Abdul Kadir S.H., Kurniawan T.A., Jilani A. Immobilization Techniques of a Photocatalyst into and onto a Polymer Membrane for Photocatalytic Activity. RSC Adv. 2021;11:6985–7014. doi: 10.1039/D0RA10964A. PubMed DOI PMC
Orudzhev F.F., Alikhanov N.M.-R., Rabadanov M.K., Ramazanov S.M., Isaev A.B., Gadzhimagomedov S.K., Aliyev A.S., Abdullaev V.R. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chemical Probl. 2018;16:484–495. doi: 10.32737/2221-8688-2018-4-484-495. DOI
Ghosh S., Kouamé N.A., Ramos L., Remita S., Dazzi A., Deniset-Besseau A., Beaunier P., Goubard F., Aubert P.H., Remita H. Conducting Polymer Nanostructures for Photocatalysis under Visible Light. Nat. Mater. 2015;14:505–511. doi: 10.1038/nmat4220. PubMed DOI
Banerjee T., Podjaski F., Kröger J., Biswal B.P., Lotsch B.V. Polymer Photocatalysts for Solar-to-Chemical Energy Conversion. Nat. Rev. Mater. 2020;6:168–190. doi: 10.1038/s41578-020-00254-z. DOI
Dai C., Liu B. Conjugated Polymers for Visible-Light-Driven Photocatalysis. Energy Environ. Sci. 2020;13:24–52. doi: 10.1039/C9EE01935A. DOI
Dallaev R., Pisarenko T., Sobola D., Orudzhev F., Ramazanov S., Trčka T. Brief Review of PVDF Properties and Applications Potential. Polymers. 2022;14:4793. doi: 10.3390/polym14224793. PubMed DOI PMC
Dong C., Fu Y., Zang W., He H., Xing L., Xue X. Self-Powering/Self-Cleaning Electronic-Skin Basing on PVDF/TiO2 Nanofibers for Actively Detecting Body Motion and Degrading Organic Pollutants. Appl. Surf. Sci. 2017;416:424–431. doi: 10.1016/j.apsusc.2017.04.188. DOI
Cauda V., Stassi S., Bejtka K., Canavese G. Nanoconfinement: An Effective Way to Enhance PVDF Piezoelectric Properties. ACS Appl. Mater. Interfaces. 2013;5:6430–6437. doi: 10.1021/am4016878. PubMed DOI
Hafiza N., Norharyati W., Salleh W., Rosman N., Asikin N. PVDF/Fe2O3 Mixed Matrix Membrane for Oily Wastewater Treatment. Malays. J. Fundam. Appl. Sci. 2019;15:703–707.
Prasad G., Sathiyanathan P., Prabu A.A., Kim K.J. Piezoelectric Characteristics of Electrospun PVDF as a Function of Phase-Separation Temperature and Metal Salt Content. Macromol. Res. 2017;25:981–988. doi: 10.1007/s13233-017-5127-4. DOI
Wu W., Yin X., Dai B., Kou J., Ni Y., Lu C. Water Flow Drived Piezo-Photocatalytic Flexible Films: Bi-Piezoelectric Integration of ZnO Nanorods and PVDF. Appl. Surf. Sci. 2020;517:146119. doi: 10.1016/j.apsusc.2020.146119. DOI
Cui Y., Yang L., Zheng J., Wang Z., Li B., Yan Y., Meng M. Synergistic Interaction of Z-Scheme 2D/3D g-C3N4/BiOI Heterojunction and Porous PVDF Membrane for Greatly Improving the Photodegradation Efficiency of Tetracycline. J. Colloid Interface Sci. 2021;586:335–348. doi: 10.1016/j.jcis.2020.10.097. PubMed DOI
Dai B., Huang H., Wang W., Chen Y., Lu C., Kou J., Wang L., Wang F., Xu Z. Greatly Enhanced Photocatalytic Activity by Organic Flexible Piezoelectric PVDF Induced Spatial Electric Field. Catal. Sci. Technol. 2017;7:5594–5601. doi: 10.1039/C7CY01638G. DOI
Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov S., Orudzhev F. Piezo-, Photo- and Piezophotocatalytic Activity of Electrospun Fibrous PVDF/CTAB Membrane. Chim. Techno Acta. 2022;9:20229420. doi: 10.15826/chimtech.2022.9.4.20. DOI
Jiang R., Lu G., Dang T., Wang M., Liu J., Yan Z., Xie H. Hydrogen-Bond Based Charge Bridge in a Heterojunction System for the Synergistic Degradation and Detoxification of Two PPCPs. Chem. Eng. J. 2023;454:140018. doi: 10.1016/j.cej.2022.140018. DOI
Yang L., Yuan J., Wang G., Cao Q., Zhang C., Li M., Shao J., Xu Y., Li H., Lu J. Construction of Tri-Functional HOFs Material for Efficient Selective Adsorption and Photodegradation of Bisphenol A and Hydrogen Production. Adv. Funct. Mater. 2023;33:2300954. doi: 10.1002/adfm.202300954. DOI
Sarkar R., Kundu T.K. Hydrogen Bond Interactions of Hydrated Aluminum Nitrate with PVDF, PVDF-TrFE, and PVDF-HFP: A Density Functional Theory-Based Illustration. Int. J. Quantum. Chem. 2020;120:e26328. doi: 10.1002/qua.26278. DOI
Fortunato M., Chandraiahgari C.R., De Bellis G., Ballirano P., Sarto F., Tamburrano A., Sarto M.S. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials. 2018;8:743. doi: 10.3390/nano8090743. PubMed DOI PMC
Yuennana J., Muensit N. Fabrication and Properties of Flexible CaCl2/P(VDF-HFP) Composite Films. J. Phys. Conf. Ser. 2019;1380:012118. doi: 10.1088/1742-6596/1380/1/012118. DOI
Sukwisute P., Yuennan J., Muensit N. Effects of the Electric Field and AlCl3·6H2O Salt on the Crystal, Morphology and Dielectric Properties of P(VDF-HFP) Fibres. J. Phys. Conf. Ser. 2018;1144:012179. doi: 10.1088/1742-6596/1144/1/012179. DOI
Xue W., Lv C., Jing Y., Chen F., Fu Q. Fabrication of Electrospun PVDF Nanofibers with Higher Content of Polar β Phase and Smaller Diameter by Adding a Small Amount of Dioctadecyl Dimethyl Ammonium Chloride. Chin. J. Polym. Sci. 2017;35:992–1000. doi: 10.1007/s10118-017-1937-2. DOI
Eleshmawi I.S. Effect of LiCl Filler on the Structure and Morphology of PVDF Films. J. Elastomers Plast. 2008;40:211–221. doi: 10.1177/0095244307081713. DOI
Tawansi A., Oraby A.H., Abdelrazek E.M., Ayad M.I., Abdelaziz M. Effect of Local Structure of MnCl2-Filled PVDF Films on Their Optical, Electrical, Electron Spin Resonance, and Magnetic Properties. J. Appl. Polym. Sci. 1998;70:1437–1445. doi: 10.1002/(SICI)1097-4628(19981121)70:8<1437::AID-APP2>3.0.CO;2-8. DOI
Tawansi A., Ayad M.I., Abdel-Razek E.M. Effect of Valence Electron Spin Polarization on the Physical Properties of CuCl2-Filled Poly(Vinylidene Fluoride) as a Microwave Modulator. J. Appl. Polym. Sci. 1999;72:771–781. doi: 10.1002/(SICI)1097-4628(19990509)72:6<771::AID-APP5>3.0.CO;2-O. DOI
Tawansi A., Oraby A.H., Badr S.I., Elashmawi I.S. Physical Properties and β-Phase Increment of AgNO3-Filled Poly(Vinylidene Fluoride) Films. Polym. Int. 2004;53:370–377. doi: 10.1002/pi.1325. DOI
Hakeem N.A., Abdelkader H.I., El-sheshtawi N.A., Eleshmawi I.S. Spectroscopic, Thermal, and Electrical Investigations of PVDF Films Filled with BiCl3. J. Appl. Polym. Sci. 2006;102:2125–2131. doi: 10.1002/app.24135. DOI
Elashmawi I.S. Effect of NaCl filler on ferroelectric phase and polaron configurations of PVDF films. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2007;42:389–393. doi: 10.1002/crat.200610833. DOI
Chen C., Bai Z., Cao Y., Dong M., Jiang K., Zhou Y., Tao Y., Gu S., Xu J., Yin X., et al. Enhanced Piezoelectric Performance of BiCl3/PVDF Nanofibers-Based Nanogenerators. Compos. Sci. Technol. 2020;192:108100. doi: 10.1016/j.compscitech.2020.108100. DOI
Dhakras D., Borkar V., Ogale S., Jog J. Enhanced Piezoresponse of Electrospun PVDF Mats with a Touch of Nickel Chloride Hexahydrate Salt. Nanoscale. 2012;4:752–756. doi: 10.1039/c2nr11841f. PubMed DOI
Ghosh S.K., Biswas A., Sen S., Das C., Henkel K., Schmeisser D., Mandal D. Yb3+ Assisted Self-Polarized PVDF Based Ferroelectretic Nanogenerator: A Facile Strategy of Highly Efficient Mechanical Energy Harvester Fabrication. Nano Energy. 2016;30:621–629. doi: 10.1016/j.nanoen.2016.10.042. DOI
Orudzhev F., Alikhanov N., Amirov A., Rabadanova A., Selimov D., Shuaibov A., Gulakhmedov R., Abdurakhmanov M., Magomedova A., Ramazanov S., et al. Porous Hybrid PVDF/BiFeO3 Smart Composite with Magnetic, Piezophotocatalytic, and Light-Emission Properties. Catalysts. 2023;13:874. doi: 10.3390/catal13050874. DOI
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible α-Fe2O3 Containing PVDF Nanofibers Film for Enhanced Catalytic Oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Singh P., Borkar H., Singh B.P., Singh V.N., Kumar A. Ferroelectric Polymer-Ceramic Composite Thick Films for Energy Storage Applications. AIP Adv. 2014;4:87117. doi: 10.1063/1.4892961. DOI
Lotfian S., Giraudmaillet C., Yoosefinejad A., Thakur V.K., Nezhad H.Y. Electrospun Piezoelectric Polymer Nanofiber Layers for Enabling in Situ Measurement in High-Performance Composite Laminates. ACS Omega. 2018;3:8891–8902. doi: 10.1021/acsomega.8b00940. PubMed DOI PMC
Hartono A., Satira S., Djamal M., Ramli R., Bahar H., Sanjaya E., Hartono A., Satira S., Djamal M., Ramli R., et al. Effect of Mechanical Treatment Temperature on Electrical Properties and Crystallite Size of PVDF Film. Adv. Mater. Phys. Chem. 2013;3:71–76. doi: 10.4236/ampc.2013.31011. DOI
Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Barnakov Y.A., Paul O., Joaquim A., Falconer A., Barnakov V.Y., Dikin D., Petranovskii V.P., Zavalin A., Ueda A., Williams F., et al. Light Intensity-Induced Phase Transitions in Graphene Oxide Doped Polyvinylidene Fluoride. Opt. Mater. Express. 2018;8:2579–2585. doi: 10.1364/OME.8.002579. DOI
Chen S., Yao K., Tay F.E.H., Liow C.L. Ferroelectric Poly(Vinylidene Fluoride) Thin Films on Si Substrate with the Β Phase Promoted by Hydrated Magnesium Nitrate. J. Appl. Phys. 2007;102:104108. doi: 10.1063/1.2812702. DOI
Hare D.E., Sorensen C.M. Interoscillator Coupling Effects on the OH Stretching Band of Liquid Water. J. Chem. Phys. 1992;96:13–22. doi: 10.1063/1.462852. DOI
Carey D.M., Korenowski G.M. Measurement of the Raman Spectrum of Liquid Water. J. Chem. Phys. 1998;108:2669–2675. doi: 10.1063/1.475659. DOI
Brooksby P.A., Ronald Fawcett W. Infrared (ATR) Study of Hydrogen Bonding in Solutions Containing Water and Ethylene Carbonate. J. Phys. Chem. A. 2000;104:8307–8314. doi: 10.1021/jp000551b. DOI
Mohammadi Ghaleni M., Al Balushi A., Kaviani S., Tavakoli E., Bavarian M., Nejati S. Fabrication of Janus Membranes for Desalination of Oil-Contaminated Saline Water. ACS Appl. Mater. Interfaces. 2018;10:44871–44879. doi: 10.1021/acsami.8b16621. PubMed DOI
Mi C., Ren Z., Li H., Yan S., Sun X. Synergistic Effect of Hydrogen Bonds and Diffusion on the β-Crystallization of Poly(Vinylidene Fluoride) on Poly(Methyl Methacrylate) Interface. Ind. Eng. Chem. Res. 2019;58:7389–7396. doi: 10.1021/acs.iecr.8b05545. DOI
Jana S., Garain S., Sen S., Mandal D. The Influence of Hydrogen Bonding on the Dielectric Constant and the Piezoelectric Energy Harvesting Performance of Hydrated Metal Salt Mediated PVDF Films. Phys. Chem. Chem. Phys. 2015;17:17429–17436. doi: 10.1039/C5CP01820J. PubMed DOI
Wang H., Jin S., Zhang X., Xie Y. Excitonic Effects in Polymeric Photocatalysts. Angew. Chem. Int. Ed. 2020;59:22828–22839. doi: 10.1002/anie.202002241. PubMed DOI
Bakulin A.A., Rao A., Pavelyev V.G., Van Loosdrecht P.H.M., Pshenichnikov M.S., Niedzialek D., Cornil J., Beljonne D., Friend R.H. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science. 2012;335:1340–1344. doi: 10.1126/science.1217745. PubMed DOI
Balzer D., Kassal I. Even a Little Delocalization Produces Large Kinetic Enhancements of Charge-Separation Efficiency in Organic Photovoltaics. Sci. Adv. 2022;8:9692. doi: 10.1126/sciadv.abl9692. PubMed DOI PMC
Ononye A.I., McIntosh A.R., Bolton J.R. Mechanism of the Photochemistry of P-Benzoquinone in Aqueous Solutions. 1. Spin Trapping and Flash Photolysis Electron Paramagnetic Resonance Studies. J. Phys. Chem. 1986;90:6266–6270. doi: 10.1021/j100281a039. DOI
Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers