• This record comes from PubMed

Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers

. 2023 Jul 30 ; 15 (15) : . [epub] 20230730

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
22-73-10091 Russian Science Foundation grant

In this study, polyvinylidene fluoride (PVDF) fibers doped with hydrated calcium nitrate were prepared using electrospinning. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), optical spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Raman, and photoluminescence (PL) spectroscopy. The results are complementary and confirm the presence of chemical hydrogen bonding between the polymer and the dopant. Additionally, there was a significant increase in the proportion of the electroactive polar beta phase from 72 to 86%. It was shown that hydrogen bonds acted as a transport pathway for electron capture by the conjugated salt, leading to more than a three-fold quenching of photoluminescence. Furthermore, the optical bandgap of the composite material narrowed to the range of visible light energies. For the first time, it the addition of the salt reduced the energy of the PVDF exciton by a factor of 17.3, initiating photocatalytic activity. The calcium nitrate-doped PVDF exhibited high photocatalytic activity in the degradation of methylene blue (MB) under both UV and visible light (89 and 44%, respectively). The reaction rate increased by a factor of 2.4 under UV and 3.3 under visible light during piezophotocatalysis. The catalysis experiments proved the efficiency of the membrane design and mechanisms of catalysis are suggested. This study offers insight into the nature of chemical bonds in piezopolymer composites and potential opportunities for their use.

See more in PubMed

Tran N.N., Escribà-Gelonch M., Sarafraz M.M., Pho Q.H., Sagadevan S., Hessel V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind. Eng. Chem. Res. 2023;62:1195–1214. doi: 10.1021/acs.iecr.2c03471. DOI

De Andrade J.R., Oliveira M.F., Da Silva M.G.C., Vieira M.G.A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018;57:3103–3127. doi: 10.1021/acs.iecr.7b05137. DOI

Alkhadra M.A., Su X., Suss M.E., Tian H., Guyes E.N., Shocron A.N., Conforti K.M., De Souza J.P., Kim N., Tedesco M., et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022;122:13547–13635. doi: 10.1021/acs.chemrev.1c00396. PubMed DOI PMC

Kokkinos P., Venieri D., Mantzavinos D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021;13:283–302. doi: 10.1007/s12560-021-09481-1. PubMed DOI PMC

Ma D., Yi H., Lai C., Liu X., Huo X., An Z., Li L., Fu Y., Li B., Zhang M., et al. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere. 2021;275:130104. doi: 10.1016/j.chemosphere.2021.130104. PubMed DOI

Liu P., Wu Z., Abramova A.V., Cravotto G. Sonochemical Processes for the Degradation of Antibiotics in Aqueous Solutions: A Review. Ultrason. Sonochem. 2021;74:105566. doi: 10.1016/j.ultsonch.2021.105566. PubMed DOI PMC

Kumar A., Rana A., Sharma G., Naushad M., Dhiman P., Kumari A., Stadler F.J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019;290:111177. doi: 10.1016/j.molliq.2019.111177. DOI

Chauhan R., Dinesh G.K., Alawa B., Chakma S. A Critical Analysis of Sono-Hybrid Advanced Oxidation Process of Ferrioxalate System for Degradation of Recalcitrant Pollutants. Chemosphere. 2021;277:130324. doi: 10.1016/j.chemosphere.2021.130324. PubMed DOI

Babuponnusami A., Muthukumar K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014;2:557–572. doi: 10.1016/j.jece.2013.10.011. DOI

Wang N., Zheng T., Zhang G., Wang P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016;4:762–787. doi: 10.1016/j.jece.2015.12.016. DOI

Ramos M.D.N., Santana C.S., Velloso C.C.V., da Silva A.H.M., Magalhães F., Aguiar A. A Review on the Treatment of Textile Industry Effluents through Fenton Processes. Process Saf. Environ. Prot. 2021;155:366–386. doi: 10.1016/j.psep.2021.09.029. DOI

Verinda S.B., Muniroh M., Yulianto E., Maharani N., Gunawan G., Amalia N.F., Hobley J., Usman A., Nur M. Degradation of Ciprofloxacin in Aqueous Solution Using Ozone Microbubbles: Spectroscopic, Kinetics, and Antibacterial Analysis. Heliyon. 2022;8:e10137. doi: 10.1016/j.heliyon.2022.e10137. PubMed DOI PMC

Moradi M., Elahinia A., Vasseghian Y., Dragoi E.N., Omidi F., Mousavi Khaneghah A. A Review on Pollutants Removal by Sono-Photo -Fenton Processes. J. Environ. Chem. Eng. 2020;8:104330. doi: 10.1016/j.jece.2020.104330. DOI

Lv S., Du Y., Wu F., Cai Y., Zhou T. Review on LSPR Assisted Photocatalysis: Effects of Physical Fields and Opportunities in Multifield Decoupling. Nanoscale Adv. 2022;4:2608–2631. doi: 10.1039/D2NA00140C. PubMed DOI PMC

Retamoso C., Escalona N., González M., Barrientos L., Allende-González P., Stancovich S., Serpell R., Fierro J.L.G., Lopez M. Effect of Particle Size on the Photocatalytic Activity of Modified Rutile Sand (TiO2) for the Discoloration of Methylene Blue in Water. J. Photochem. Photobiol. A Chem. 2019;378:136–141. doi: 10.1016/j.jphotochem.2019.04.021. DOI

Wang H., Lu J. A Review on Particle Size Effect in Metal-Catalyzed Heterogeneous Reactions. Chin. J. Chem. 2020;38:1422–1444. doi: 10.1002/cjoc.202000205. DOI

Ahmad I., Zou Y., Yan J., Liu Y., Shukrullah S., Naz M.Y., Hussain H., Khan W.Q., Khalid N.R. Semiconductor Photocatalysts: A Critical Review Highlighting the Various Strategies to Boost the Photocatalytic Performances for Diverse Applications. Adv. Colloid Interface Sci. 2023;311:102830. doi: 10.1016/j.cis.2022.102830. PubMed DOI

Joseph A., Vijayanandan A. Review on Support Materials Used for Immobilization of Nano-Photocatalysts for Water Treatment Applications. Inorganica Chim. Acta. 2023;545:121284. doi: 10.1016/j.ica.2022.121284. DOI

Li X., Chen Y., Tao Y., Shen L., Xu Z., Bian Z., Li H. Challenges of Photocatalysis and Their Coping Strategies. Chem. Catal. 2022;2:1315–1345. doi: 10.1016/j.checat.2022.04.007. DOI

Jacinto M.J., Ferreira L.F., Silva V.C. Magnetic Materials for Photocatalytic Applications—A Review. J. Solgel. Sci. Technol. 2020;96:1–14. doi: 10.1007/s10971-020-05333-9. DOI

Zakria H.S., Othman M.H.D., Kamaludin R., Sheikh Abdul Kadir S.H., Kurniawan T.A., Jilani A. Immobilization Techniques of a Photocatalyst into and onto a Polymer Membrane for Photocatalytic Activity. RSC Adv. 2021;11:6985–7014. doi: 10.1039/D0RA10964A. PubMed DOI PMC

Orudzhev F.F., Alikhanov N.M.-R., Rabadanov M.K., Ramazanov S.M., Isaev A.B., Gadzhimagomedov S.K., Aliyev A.S., Abdullaev V.R. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chemical Probl. 2018;16:484–495. doi: 10.32737/2221-8688-2018-4-484-495. DOI

Ghosh S., Kouamé N.A., Ramos L., Remita S., Dazzi A., Deniset-Besseau A., Beaunier P., Goubard F., Aubert P.H., Remita H. Conducting Polymer Nanostructures for Photocatalysis under Visible Light. Nat. Mater. 2015;14:505–511. doi: 10.1038/nmat4220. PubMed DOI

Banerjee T., Podjaski F., Kröger J., Biswal B.P., Lotsch B.V. Polymer Photocatalysts for Solar-to-Chemical Energy Conversion. Nat. Rev. Mater. 2020;6:168–190. doi: 10.1038/s41578-020-00254-z. DOI

Dai C., Liu B. Conjugated Polymers for Visible-Light-Driven Photocatalysis. Energy Environ. Sci. 2020;13:24–52. doi: 10.1039/C9EE01935A. DOI

Dallaev R., Pisarenko T., Sobola D., Orudzhev F., Ramazanov S., Trčka T. Brief Review of PVDF Properties and Applications Potential. Polymers. 2022;14:4793. doi: 10.3390/polym14224793. PubMed DOI PMC

Dong C., Fu Y., Zang W., He H., Xing L., Xue X. Self-Powering/Self-Cleaning Electronic-Skin Basing on PVDF/TiO2 Nanofibers for Actively Detecting Body Motion and Degrading Organic Pollutants. Appl. Surf. Sci. 2017;416:424–431. doi: 10.1016/j.apsusc.2017.04.188. DOI

Cauda V., Stassi S., Bejtka K., Canavese G. Nanoconfinement: An Effective Way to Enhance PVDF Piezoelectric Properties. ACS Appl. Mater. Interfaces. 2013;5:6430–6437. doi: 10.1021/am4016878. PubMed DOI

Hafiza N., Norharyati W., Salleh W., Rosman N., Asikin N. PVDF/Fe2O3 Mixed Matrix Membrane for Oily Wastewater Treatment. Malays. J. Fundam. Appl. Sci. 2019;15:703–707.

Prasad G., Sathiyanathan P., Prabu A.A., Kim K.J. Piezoelectric Characteristics of Electrospun PVDF as a Function of Phase-Separation Temperature and Metal Salt Content. Macromol. Res. 2017;25:981–988. doi: 10.1007/s13233-017-5127-4. DOI

Wu W., Yin X., Dai B., Kou J., Ni Y., Lu C. Water Flow Drived Piezo-Photocatalytic Flexible Films: Bi-Piezoelectric Integration of ZnO Nanorods and PVDF. Appl. Surf. Sci. 2020;517:146119. doi: 10.1016/j.apsusc.2020.146119. DOI

Cui Y., Yang L., Zheng J., Wang Z., Li B., Yan Y., Meng M. Synergistic Interaction of Z-Scheme 2D/3D g-C3N4/BiOI Heterojunction and Porous PVDF Membrane for Greatly Improving the Photodegradation Efficiency of Tetracycline. J. Colloid Interface Sci. 2021;586:335–348. doi: 10.1016/j.jcis.2020.10.097. PubMed DOI

Dai B., Huang H., Wang W., Chen Y., Lu C., Kou J., Wang L., Wang F., Xu Z. Greatly Enhanced Photocatalytic Activity by Organic Flexible Piezoelectric PVDF Induced Spatial Electric Field. Catal. Sci. Technol. 2017;7:5594–5601. doi: 10.1039/C7CY01638G. DOI

Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov S., Orudzhev F. Piezo-, Photo- and Piezophotocatalytic Activity of Electrospun Fibrous PVDF/CTAB Membrane. Chim. Techno Acta. 2022;9:20229420. doi: 10.15826/chimtech.2022.9.4.20. DOI

Jiang R., Lu G., Dang T., Wang M., Liu J., Yan Z., Xie H. Hydrogen-Bond Based Charge Bridge in a Heterojunction System for the Synergistic Degradation and Detoxification of Two PPCPs. Chem. Eng. J. 2023;454:140018. doi: 10.1016/j.cej.2022.140018. DOI

Yang L., Yuan J., Wang G., Cao Q., Zhang C., Li M., Shao J., Xu Y., Li H., Lu J. Construction of Tri-Functional HOFs Material for Efficient Selective Adsorption and Photodegradation of Bisphenol A and Hydrogen Production. Adv. Funct. Mater. 2023;33:2300954. doi: 10.1002/adfm.202300954. DOI

Sarkar R., Kundu T.K. Hydrogen Bond Interactions of Hydrated Aluminum Nitrate with PVDF, PVDF-TrFE, and PVDF-HFP: A Density Functional Theory-Based Illustration. Int. J. Quantum. Chem. 2020;120:e26328. doi: 10.1002/qua.26278. DOI

Fortunato M., Chandraiahgari C.R., De Bellis G., Ballirano P., Sarto F., Tamburrano A., Sarto M.S. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials. 2018;8:743. doi: 10.3390/nano8090743. PubMed DOI PMC

Yuennana J., Muensit N. Fabrication and Properties of Flexible CaCl2/P(VDF-HFP) Composite Films. J. Phys. Conf. Ser. 2019;1380:012118. doi: 10.1088/1742-6596/1380/1/012118. DOI

Sukwisute P., Yuennan J., Muensit N. Effects of the Electric Field and AlCl3·6H2O Salt on the Crystal, Morphology and Dielectric Properties of P(VDF-HFP) Fibres. J. Phys. Conf. Ser. 2018;1144:012179. doi: 10.1088/1742-6596/1144/1/012179. DOI

Xue W., Lv C., Jing Y., Chen F., Fu Q. Fabrication of Electrospun PVDF Nanofibers with Higher Content of Polar β Phase and Smaller Diameter by Adding a Small Amount of Dioctadecyl Dimethyl Ammonium Chloride. Chin. J. Polym. Sci. 2017;35:992–1000. doi: 10.1007/s10118-017-1937-2. DOI

Eleshmawi I.S. Effect of LiCl Filler on the Structure and Morphology of PVDF Films. J. Elastomers Plast. 2008;40:211–221. doi: 10.1177/0095244307081713. DOI

Tawansi A., Oraby A.H., Abdelrazek E.M., Ayad M.I., Abdelaziz M. Effect of Local Structure of MnCl2-Filled PVDF Films on Their Optical, Electrical, Electron Spin Resonance, and Magnetic Properties. J. Appl. Polym. Sci. 1998;70:1437–1445. doi: 10.1002/(SICI)1097-4628(19981121)70:8<1437::AID-APP2>3.0.CO;2-8. DOI

Tawansi A., Ayad M.I., Abdel-Razek E.M. Effect of Valence Electron Spin Polarization on the Physical Properties of CuCl2-Filled Poly(Vinylidene Fluoride) as a Microwave Modulator. J. Appl. Polym. Sci. 1999;72:771–781. doi: 10.1002/(SICI)1097-4628(19990509)72:6<771::AID-APP5>3.0.CO;2-O. DOI

Tawansi A., Oraby A.H., Badr S.I., Elashmawi I.S. Physical Properties and β-Phase Increment of AgNO3-Filled Poly(Vinylidene Fluoride) Films. Polym. Int. 2004;53:370–377. doi: 10.1002/pi.1325. DOI

Hakeem N.A., Abdelkader H.I., El-sheshtawi N.A., Eleshmawi I.S. Spectroscopic, Thermal, and Electrical Investigations of PVDF Films Filled with BiCl3. J. Appl. Polym. Sci. 2006;102:2125–2131. doi: 10.1002/app.24135. DOI

Elashmawi I.S. Effect of NaCl filler on ferroelectric phase and polaron configurations of PVDF films. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2007;42:389–393. doi: 10.1002/crat.200610833. DOI

Chen C., Bai Z., Cao Y., Dong M., Jiang K., Zhou Y., Tao Y., Gu S., Xu J., Yin X., et al. Enhanced Piezoelectric Performance of BiCl3/PVDF Nanofibers-Based Nanogenerators. Compos. Sci. Technol. 2020;192:108100. doi: 10.1016/j.compscitech.2020.108100. DOI

Dhakras D., Borkar V., Ogale S., Jog J. Enhanced Piezoresponse of Electrospun PVDF Mats with a Touch of Nickel Chloride Hexahydrate Salt. Nanoscale. 2012;4:752–756. doi: 10.1039/c2nr11841f. PubMed DOI

Ghosh S.K., Biswas A., Sen S., Das C., Henkel K., Schmeisser D., Mandal D. Yb3+ Assisted Self-Polarized PVDF Based Ferroelectretic Nanogenerator: A Facile Strategy of Highly Efficient Mechanical Energy Harvester Fabrication. Nano Energy. 2016;30:621–629. doi: 10.1016/j.nanoen.2016.10.042. DOI

Orudzhev F., Alikhanov N., Amirov A., Rabadanova A., Selimov D., Shuaibov A., Gulakhmedov R., Abdurakhmanov M., Magomedova A., Ramazanov S., et al. Porous Hybrid PVDF/BiFeO3 Smart Composite with Magnetic, Piezophotocatalytic, and Light-Emission Properties. Catalysts. 2023;13:874. doi: 10.3390/catal13050874. DOI

Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible α-Fe2O3 Containing PVDF Nanofibers Film for Enhanced Catalytic Oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI

Singh P., Borkar H., Singh B.P., Singh V.N., Kumar A. Ferroelectric Polymer-Ceramic Composite Thick Films for Energy Storage Applications. AIP Adv. 2014;4:87117. doi: 10.1063/1.4892961. DOI

Lotfian S., Giraudmaillet C., Yoosefinejad A., Thakur V.K., Nezhad H.Y. Electrospun Piezoelectric Polymer Nanofiber Layers for Enabling in Situ Measurement in High-Performance Composite Laminates. ACS Omega. 2018;3:8891–8902. doi: 10.1021/acsomega.8b00940. PubMed DOI PMC

Hartono A., Satira S., Djamal M., Ramli R., Bahar H., Sanjaya E., Hartono A., Satira S., Djamal M., Ramli R., et al. Effect of Mechanical Treatment Temperature on Electrical Properties and Crystallite Size of PVDF Film. Adv. Mater. Phys. Chem. 2013;3:71–76. doi: 10.4236/ampc.2013.31011. DOI

Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI

Barnakov Y.A., Paul O., Joaquim A., Falconer A., Barnakov V.Y., Dikin D., Petranovskii V.P., Zavalin A., Ueda A., Williams F., et al. Light Intensity-Induced Phase Transitions in Graphene Oxide Doped Polyvinylidene Fluoride. Opt. Mater. Express. 2018;8:2579–2585. doi: 10.1364/OME.8.002579. DOI

Chen S., Yao K., Tay F.E.H., Liow C.L. Ferroelectric Poly(Vinylidene Fluoride) Thin Films on Si Substrate with the Β Phase Promoted by Hydrated Magnesium Nitrate. J. Appl. Phys. 2007;102:104108. doi: 10.1063/1.2812702. DOI

Hare D.E., Sorensen C.M. Interoscillator Coupling Effects on the OH Stretching Band of Liquid Water. J. Chem. Phys. 1992;96:13–22. doi: 10.1063/1.462852. DOI

Carey D.M., Korenowski G.M. Measurement of the Raman Spectrum of Liquid Water. J. Chem. Phys. 1998;108:2669–2675. doi: 10.1063/1.475659. DOI

Brooksby P.A., Ronald Fawcett W. Infrared (ATR) Study of Hydrogen Bonding in Solutions Containing Water and Ethylene Carbonate. J. Phys. Chem. A. 2000;104:8307–8314. doi: 10.1021/jp000551b. DOI

Mohammadi Ghaleni M., Al Balushi A., Kaviani S., Tavakoli E., Bavarian M., Nejati S. Fabrication of Janus Membranes for Desalination of Oil-Contaminated Saline Water. ACS Appl. Mater. Interfaces. 2018;10:44871–44879. doi: 10.1021/acsami.8b16621. PubMed DOI

Mi C., Ren Z., Li H., Yan S., Sun X. Synergistic Effect of Hydrogen Bonds and Diffusion on the β-Crystallization of Poly(Vinylidene Fluoride) on Poly(Methyl Methacrylate) Interface. Ind. Eng. Chem. Res. 2019;58:7389–7396. doi: 10.1021/acs.iecr.8b05545. DOI

Jana S., Garain S., Sen S., Mandal D. The Influence of Hydrogen Bonding on the Dielectric Constant and the Piezoelectric Energy Harvesting Performance of Hydrated Metal Salt Mediated PVDF Films. Phys. Chem. Chem. Phys. 2015;17:17429–17436. doi: 10.1039/C5CP01820J. PubMed DOI

Wang H., Jin S., Zhang X., Xie Y. Excitonic Effects in Polymeric Photocatalysts. Angew. Chem. Int. Ed. 2020;59:22828–22839. doi: 10.1002/anie.202002241. PubMed DOI

Bakulin A.A., Rao A., Pavelyev V.G., Van Loosdrecht P.H.M., Pshenichnikov M.S., Niedzialek D., Cornil J., Beljonne D., Friend R.H. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science. 2012;335:1340–1344. doi: 10.1126/science.1217745. PubMed DOI

Balzer D., Kassal I. Even a Little Delocalization Produces Large Kinetic Enhancements of Charge-Separation Efficiency in Organic Photovoltaics. Sci. Adv. 2022;8:9692. doi: 10.1126/sciadv.abl9692. PubMed DOI PMC

Ononye A.I., McIntosh A.R., Bolton J.R. Mechanism of the Photochemistry of P-Benzoquinone in Aqueous Solutions. 1. Spin Trapping and Flash Photolysis Electron Paramagnetic Resonance Studies. J. Phys. Chem. 1986;90:6266–6270. doi: 10.1021/j100281a039. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...