Marine Biomaterials: Hyaluronan

. 2023 Jul 27 ; 21 (8) : . [epub] 20230727

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37623707

The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.

Zobrazit více v PubMed

Khrunyk Y., Lach S., Petrenko I., Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar. Drugs. 2020;18:589. doi: 10.3390/md18120589. PubMed DOI PMC

Abdel-Mohsen A.M., Jancar J., Abdel-Rahman R.M., Vojtek L., Hyršl P., Dušková M., Nejezchlebová H. A novel in situ Silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations. Int. J. Pharm. 2017;520:241–253. doi: 10.1016/j.ijpharm.2017.02.003. PubMed DOI

Zhang H., Wu X., Quan L., Ao Q. Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar. Drugs. 2022;20:372. doi: 10.3390/md20060372. PubMed DOI PMC

Kim K.S., Kim S., Beack S., Yang J.-A., Yun S.H., Hahn S.K. In vivo real-time confocal microscopy for target-specific delivery of hyaluronic acid-quantum dot conjugates. Nanomed. Nanotechnol. Biol. Med. 2012;8:1070–1073. doi: 10.1016/j.nano.2012.05.014. PubMed DOI

Thomas R.G., Moon M.J., Lee H., Sasikala A.R.K., Kim C.S., Park I.-K., Jeong Y.Y. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr. Polym. 2015;131:439–446. doi: 10.1016/j.carbpol.2015.06.010. PubMed DOI

Romano G., Almeida M., Varela Coelho A., Cutignano A., Gonçalves L.G., Hansen E., Khnykin D., Mass T., Ramšak A., Rocha M.S., et al. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar. Drugs. 2022;20:219. doi: 10.3390/md20040219. PubMed DOI PMC

Azuma N., Ikoma T., Osaka A., Tanaka J. Effect of hyaluronic acid on the rheology of zinc/malic acid hydrogels. Trans. 7th World Biomater. Congr. 2004;24:703–707.

Sionkowska A., Kaczmarek B. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int. J. Biol. Macromol. 2017;102:658–666. doi: 10.1016/j.ijbiomac.2017.03.196. PubMed DOI

Dell’Anno F., Sansone C., Ianora A., Dell’Anno A. Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Mar. Environ. Res. 2018;137:196–205. doi: 10.1016/j.marenvres.2018.03.010. PubMed DOI

Sgorla D., Almeida A., Azevedo C., Bunhak ÿ.J., Sarmento B., Cavalcanti O.A. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes. Int. J. Pharm. 2016;511:380–389. doi: 10.1016/j.ijpharm.2016.07.033. PubMed DOI

Tennakoon P., Chandika P., Yi M., Jung W.-K. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative. iScience. 2023;26:106404. doi: 10.1016/j.isci.2023.106404. PubMed DOI PMC

Lalevée G., Sudre G., Montembault A., Meadows J., Malaise S., Crépet A., David L., Delair T. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydr. Polym. 2016;154:86–95. doi: 10.1016/j.carbpol.2016.08.007. PubMed DOI

Payne W.M., Svechkarev D., Kyrychenko A., Mohs A.M. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr. Polym. 2018;182:132–141. doi: 10.1016/j.carbpol.2017.10.054. PubMed DOI PMC

Wang L., Li W., Qin S. Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications. Polymers. 2021;13:2482. doi: 10.3390/polym13152482. PubMed DOI PMC

Aly A.S., Abdel-Mohsen A.M., Hrdina R., Abou-Okeil A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. J. Nat. Fibers. 2011;8:176–188. doi: 10.1080/15440478.2011.602243. DOI

Abdel-Mohsen A.M., Hrdina R., Burgert L., Abdel-Rahman R.M., Hašová M., Šmejkalová D., Kolář M., Pekar M., Aly A.S. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydr. Polym. 2013;92:1177–1187. doi: 10.1016/j.carbpol.2012.08.098. PubMed DOI

Kulpetchdara K., Limpichaipanit A., Rujijanagul G., Randorn C., Chokethawai K. Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel. Surf. Coat. Technol. 2016;306:181–186. doi: 10.1016/j.surfcoat.2016.05.069. DOI

Barabadi H., Ovais M., Shinwari Z.K., Saravanan M. Anti-cancer green bionanomaterials: Present status and future prospects. Green Chem. Lett. Rev. 2017;10:285–314. doi: 10.1080/17518253.2017.1385856. DOI

Domingues R.M.A., Silva M., Gershovich P., Betta S., Babo P., Caridade S.G., Mano J.F., Motta A., Reis R.L., Gomes M.E. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chem. 2015;26:1571–1581. doi: 10.1021/acs.bioconjchem.5b00209. PubMed DOI

Li Y., Qing S., Zhou J., Yang G. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Carbohydr. Polym. 2014;103:496–501. doi: 10.1016/j.carbpol.2013.12.059. PubMed DOI

Fouda M.M.G., Abdel-Mohsen A.M., Ebaid H., Hassan I., Al-Tamimi J., Abdel-Rahman R.M., Metwalli A., Alhazza I., Rady A., El-Faham A., et al. Wound healing of different molecular weight of hyaluronan; in-vivo study. Int. J. Biol. Macromol. 2016;89:582–591. doi: 10.1016/j.ijbiomac.2016.05.021. PubMed DOI

Liu X., Gao C., Gu J., Jiang Y., Yang X., Li S., Gao W., An T., Duan H., Fu J., et al. Hyaluronic Acid Stabilized Iodine-Containing Nanoparticles with Au Nanoshell Coating for X-ray CT Imaging and Photothermal Therapy of Tumors. ACS Appl. Mater. Interfaces. 2016;8:27622–27631. doi: 10.1021/acsami.6b11918. PubMed DOI

Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC

Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI

Snetkov P., Zakharova K., Morozkina S., Olekhnovich R., Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers. 2020;12:1800. doi: 10.3390/polym12081800. PubMed DOI PMC

Fakhari A., Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081–7092. doi: 10.1016/j.actbio.2013.03.005. PubMed DOI PMC

Prestwich G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release. 2011;155:193–199. doi: 10.1016/j.jconrel.2011.04.007. PubMed DOI PMC

Vázquez J.A., Rodríguez-Amado I., Montemayor M.I., Fraguas J., González M.D., Murado M.A. Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review. Mar. Drugs. 2013;11:747–774. doi: 10.3390/md11030747. PubMed DOI PMC

Bai M., Han W., Zhao X., Wang Q., Gao Y., Deng S. Glycosaminoglycans from a Sea Snake (Lapemis curtus): Extraction, Structural Characterization and Antioxidant Activity. Mar. Drugs. 2018;16:170. doi: 10.3390/md16050170. PubMed DOI PMC

Giji S., Arumugam M. Chapter Four—Isolation and Characterization of Hyaluronic Acid from Marine Organisms. In: Kim S.-K., editor. Advances in Food and Nutrition Research. Volume 72. Academic Press; Cambridge, MA, USA: 2014. pp. 61–77. PubMed

Abdallah M.M., Fernández N., Matias A.A., Bronze M.d.R. Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr. Polym. 2020;243:116441. doi: 10.1016/j.carbpol.2020.116441. PubMed DOI

Sarangi M.K., Rao M.E.B., Parcha V., Yi D.K., Nanda S.S. Chapter 22—Marine polysaccharides for drug delivery in tissue engineering. In: Hasnain M.S., Nayak A.K., editors. Natural Polysaccharides in Drug Delivery and Biomedical Applications. Academic Press; Cambridge, MA, USA: 2019. pp. 513–530.

Juncan A.M., Moisă D.G., Santini A., Morgovan C., Rus L.-L., Vonica-Țincu A.L., Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules. 2021;26:4429. doi: 10.3390/molecules26154429. PubMed DOI PMC

Rau L.-R., Tsao S.-W., Liaw J.-W., Tsai S.-W. Selective Targeting and Restrictive Damage for Nonspecific Cells by Pulsed Laser-Activated Hyaluronan-Gold Nanoparticles. Biomacromolecules. 2016;17:2514–2521. doi: 10.1021/acs.biomac.6b00386. PubMed DOI

Rodriguez-Marquez C.D., Arteaga-Marin S., Rivas-Sánchez A., Autrique-Hernández R., Castro-Muñoz R. A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid. Int. J. Mol. Sci. 2022;23:6038. doi: 10.3390/ijms23116038. PubMed DOI PMC

Chascall V., Calabro A., Midura R.J., Yanagishita M. Methods in Enzymology. Volume 230. Academic Press; Cambridge, MA, USA: 1994. [24] Isolation and characterization of proteoglycans; pp. 390–417. PubMed

Scott J.E. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem. Anal. 1960;8:145–197. PubMed

Boas N.F. Isolation of hyaluronic acid from the cocks comb. J. Biol. Chem. 1949;181:573–575. doi: 10.1016/S0021-9258(18)56578-9. PubMed DOI

Lim C., Yusoff S., Ng C.G., Lim P.E., Ching Y.C. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng. 2021;9:105895. doi: 10.1016/j.jece.2021.105895. DOI

Lin R., Kwok J.C.F., Crespo D., Fawcett J.W. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J. Neurochem. 2008;104:400–408. doi: 10.1111/j.1471-4159.2007.05066.x. PubMed DOI

Murado M.A., Fraguas J., Montemayor M.I., Vázquez J.A., González P. Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochem. Eng. J. 2010;49:126–132. doi: 10.1016/j.bej.2009.12.006. DOI

Volpi N., Maccari F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie. 2003;85:619–625. doi: 10.1016/S0300-9084(03)00083-X. PubMed DOI

Li W., Zhou C., Fu Y., Chen T., Liu X., Zhang Z., Gong T. Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm. Sin. B. 2020;10:693–710. doi: 10.1016/j.apsb.2019.07.003. PubMed DOI PMC

Underhill C.B., Chi-Rosso G., Toole B.P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J. Biol. Chem. 1983;258:8086–8091. doi: 10.1016/S0021-9258(20)82031-6. PubMed DOI

Välimaa A.-L., Mäkinen S., Mattila P., Marnila P., Pihlanto A., Mäki M., Hiidenhovi J. Fish and fish side streams are valuable sources of high-value components. Food Qual. Saf. 2019;3:209–226. doi: 10.1093/fqsafe/fyz024. DOI

Weng H., Jia W., Li M., Chen Z. New injectable chitosan-hyaluronic acid based hydrogels for hemostasis and wound healing. Carbohydr. Polym. 2022;294:119767. doi: 10.1016/j.carbpol.2022.119767. PubMed DOI

Townsend M., Davies K., Hanley N., Hewitt J.E., Lundquist C.J., Lohrer A.M. The Challenge of Implementing the Marine Ecosystem Service Concept. Front. Mar. Sci. 2018;5:359. doi: 10.3389/fmars.2018.00359. DOI

Matsumura G., De Salegui M., Herp A., Pigman W. The preparation of hyaluronic acid from bovine synovial fluid. Biochim. Biophys. Acta. 1963;69:574–576. doi: 10.1016/0006-3002(63)91314-3. PubMed DOI

Murado M.A., Montemayor M.I., Cabo M.L., Vázquez J.A., González M.P. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process. 2012;90:491–498. doi: 10.1016/j.fbp.2011.11.002. DOI

Takasugi M., Firsanov D., Tombline G., Ning H., Ablaeva J., Seluanov A., Gorbunova V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 2020;11:2376. doi: 10.1038/s41467-020-16050-w. PubMed DOI PMC

Michalczyk M., Humeniuk E., Adamczuk G., Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int. J. Mol. Sci. 2023;24:103. doi: 10.3390/ijms24010103. PubMed DOI PMC

Ruppert S.M., Hawn T.R., Arrigoni A., Wight T.N., Bollyky P.L. Tissue integrity signals communicated by high-molecular-weight hyaluronan and the resolution of inflammation. Immunol. Res. 2014;58:186–192. doi: 10.1007/s12026-014-8495-2. PubMed DOI PMC

Hoarau A., Polette M., Coraux C. Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules. 2022;12:658. doi: 10.3390/biom12050658. PubMed DOI PMC

Fassini D., Wilkie I.C., Pozzolini M., Ferrario C., Sugni M., Rocha M.S., Giovine M., Bonasoro F., Silva T.H., Reis R.L. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules. 2021;22:1815–1834. doi: 10.1021/acs.biomac.1c00013. PubMed DOI

Park H.-Y., Kweon D.-K., Kim J.-K. Molecular weight-dependent hyaluronic acid permeability and tight junction modulation in human buccal TR146 cell monolayers. Int. J. Biol. Macromol. 2023;227:182–192. doi: 10.1016/j.ijbiomac.2022.12.106. PubMed DOI

Yasin A., Ren Y., Li J., Sheng Y., Cao C., Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022;10:910290. doi: 10.3389/fbioe.2022.910290. PubMed DOI PMC

Abdel-Rahman R.M., Frankova J., Sklenarova R., Kapralkova L., Kelnar I., Abdel-Mohsen A.M. Hyaluronan/zinc oxide nanocomposite-based Membrane: Preparation, Characterization, In vitro and In vivo Evaluation. ACS Appl. Polym. Mater. 2022;4:7723–7738. doi: 10.1021/acsapm.2c01296. DOI

Zhu Z., Yin-Min W., Jun Y., Xu-Song L. Hyaluronic acid: A versatile biomaterial in tissue engineering. Plast. Aesthetic Res. 2017;4:219–227. doi: 10.20517/2347-9264.2017.71. DOI

Ratajczak P., Maciejak O., Kopciuch D., Paczkowska A., Zaprutko T., Kus K. Directions of hyaluronic acid application in cosmetology. J. Cosmet. Dermatol. 2023;22:862–871. doi: 10.1111/jocd.15485. PubMed DOI

Damodarasamy M., Johnson R.S., Bentov I., MacCoss M.J., Vernon R.B., Reed M.J. Hyaluronan enhances wound repair and increases collagen III in aged dermal wounds. Wound Repair Regen. 2014;22:521–526. doi: 10.1111/wrr.12192. PubMed DOI PMC

Campoccia D., Doherty P., Radice M., Brun P., Abatangelo G., Williams D.F. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19:2101–2127. doi: 10.1016/S0142-9612(98)00042-8. PubMed DOI

Huerta-Angeles G., Šmejkalová D., Chládková D., Ehlová T., Buffa R., Velebný V. Synthesis of highly substituted amide hyaluronan derivatives with tailored degree of substitution and their crosslinking via click chemistry. Carbohydr. Polym. 2011;84:1293–1300. doi: 10.1016/j.carbpol.2011.01.021. DOI

Montgomery R., Nag S. Periodate oxidation of hyaluronic acid. Biochim. Biophys. Acta. 1963;74:300–302. doi: 10.1016/0006-3002(63)91369-6. DOI

Arpicco S., Milla P., Stella B., Dosio F. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules. 2014;19:3193–3230. doi: 10.3390/molecules19033193. PubMed DOI PMC

Hintze V., Schnabelrauch M., Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front. Chem. 2022;10:830671. doi: 10.3389/fchem.2022.830671. PubMed DOI PMC

Kristiansen K.A., Potthast A., Christensen B.E. Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 2010;345:1264–1271. doi: 10.1016/j.carres.2010.02.011. PubMed DOI

Jiang B., Drouet E., Milas M., Rinaudo M. Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr. Res. 2000;327:455–461. doi: 10.1016/S0008-6215(00)00059-8. PubMed DOI

Santhanam S., Liang J., Baid R., Ravi N. Investigating thiol-modification on hyaluronan via carbodiimide chemistry using response surface methodology. J. Biomed. Mater. Res. Part A. 2015;103:2300–2308. doi: 10.1002/jbm.a.35366. PubMed DOI PMC

Dovedytis M., Liu Z.J., Bartlett S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020;1:102–113. doi: 10.1016/j.engreg.2020.10.001. DOI

Babasola O., Rees-Milton K.J., Bebe S., Wang J., Anastassiades T.P. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages. J. Biol. Chem. 2014;289:24779–24791. doi: 10.1074/jbc.M113.515783. PubMed DOI PMC

Bebe S., Anastassiades T. Chemical Modification of the N-Acetyl Moieties of Hyaluronic Acid from Streptococcus equi for Studies in Cytokine Production. In: Brockhausen I., editor. Bacterial Polysaccharides: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 99–113. PubMed

Guo S., DiPietro L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125. PubMed DOI PMC

Wallace H.A., Basehore B.M., Zito P.M. Wound Healing Phases. StatPearls Publishing; Treasure Island, FL, USA: 2022. PubMed

Frykberg R.G., Banks J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care. 2015;4:560–582. doi: 10.1089/wound.2015.0635. PubMed DOI PMC

Li H., Xue Y., Jia B., Bai Y., Zuo Y., Wang S., Zhao Y., Yang W., Tang H. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 2018;188:92–100. doi: 10.1016/j.carbpol.2018.01.102. PubMed DOI

Suo H., Hussain M., Wang H., Zhou N., Tao J., Jiang H., Zhu J. Injectable and pH-Sensitive Hyaluronic Acid-Based Hydrogels with On-Demand Release of Antimicrobial Peptides for Infected Wound Healing. Biomacromolecules. 2021;22:3049–3059. doi: 10.1021/acs.biomac.1c00502. PubMed DOI

Li M., Liang Y., Liang Y., Pan G., Guo B. Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem. Eng. J. 2022;427:132039. doi: 10.1016/j.cej.2021.132039. DOI

Liu Y., Niu H., Wang C., Yang X., Li W., Zhang Y., Ma X., Xu Y., Zheng P., Wang J., et al. Bio-inspired, bio-degradable adenosine 5′-diphosphate-modified hyaluronic acid coordinated hydrophobic undecanal-modified chitosan for hemostasis and wound healing. Bioact. Mater. 2022;17:162–177. doi: 10.1016/j.bioactmat.2022.01.025. PubMed DOI PMC

Lei H., Zhu C., Fan D. Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair. Carbohydr. Polym. 2020;239:116249. doi: 10.1016/j.carbpol.2020.116249. PubMed DOI

Alemzadeh E., Oryan A., Mohammadi A.A. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020;108:555–567. doi: 10.1002/jbm.b.34411. PubMed DOI

Hu B., Gao M., Boakye-Yiadom K.O., Ho W., Yu W., Xu X., Zhang X.-Q. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact. Mater. 2021;6:4592–4606. doi: 10.1016/j.bioactmat.2021.04.040. PubMed DOI PMC

Liu S., Zhang Q., Yu J., Shao N., Lu H., Guo J., Qiu X., Zhou D., Huang Y. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Adv. Healthc. Mater. 2020;9:2000198. doi: 10.1002/adhm.202000198. PubMed DOI

Yuan Y., Fan D., Shen S., Ma X. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 2022;433:133859. doi: 10.1016/j.cej.2021.133859. DOI

Gao X., Huang R., Jiao Y., Groth T., Yang W., Tu C., Li H., Gong F., Chu J., Zhao M. Enhanced wound healing in diabetic mice by hyaluronan/chitosan multilayer-coated PLLA nanofibrous mats with sustained release of insulin. Appl. Surf. Sci. 2022;576:151825. doi: 10.1016/j.apsusc.2021.151825. DOI

Li Z., Zhao Y., Liu H., Ren M., Wang Z., Wang X., Liu H., Feng Y., Lin Q., Wang C., et al. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Mater. Des. 2021;210:110104. doi: 10.1016/j.matdes.2021.110104. DOI

Abdel-Rahman R.M., Abdel-Mohsen A.M., Hrdina R., Burgert L., Fohlerova Z., Pavliňák D., Sayed O.N., Jancar J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int. J. Biol. Macromol. 2016;89:725–736. doi: 10.1016/j.ijbiomac.2016.04.087. PubMed DOI

Kim N.-G., Chandika P., Kim S.-C., Won D.-H., Park W.S., Choi I.-W., Lee S.G., Kim Y.-M., Jung W.-K. Fabrication and characterization of ferric ion cross-linked hyaluronic acid/pectin-based injectable hydrogel with antibacterial ability. Polymer. 2023;271:125808. doi: 10.1016/j.polymer.2023.125808. DOI

Guo F., Liu Y., Chen S., Lin Y., Yue Y. A Schiff base hydrogel dressing loading extracts from Periplaneta americana Myristica fragrans for diabetic wound healing. Int. J. Biol. Macromol. 2023;230:123256. doi: 10.1016/j.ijbiomac.2023.123256. PubMed DOI

Lv Y., Cai F., He Y., Li L., Huang Y., Yang J., Zheng Y., Shi X. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing. Acta Biomater. 2023;159:95–110. doi: 10.1016/j.actbio.2023.01.045. PubMed DOI

Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12:735. doi: 10.3390/pharmaceutics12080735. PubMed DOI PMC

Schaffer C.J., Nanney L.B. Cell Biology of Wound Healing. In: Jeon K.W., editor. International Review of Cytology. Volume 169. Academic Press; Cambridge, MA, USA: 1996. pp. 151–181. PubMed

Enoch S., Leaper D.J. Basic science of wound healing. Surgery. 2005;23:37–42.

Periayah M.H., Halim A.S., Mat Saad A.Z. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int. J. Hematol. Oncol. Stem. Cell Res. 2017;11:319–327. PubMed PMC

Ellis S., Lin E.J., Tartar D. Immunology of Wound Healing. Curr. Dermatol. Rep. 2018;7:350–358. doi: 10.1007/s13671-018-0234-9. PubMed DOI PMC

Krzyszczyk P., Schloss R., Palmer A., Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018;9:419. doi: 10.3389/fphys.2018.00419. PubMed DOI PMC

Ginhoux F., Schultze J.L., Murray P.J., Ochando J., Biswas S.K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 2016;17:34–40. doi: 10.1038/ni.3324. PubMed DOI

Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014;5:514. doi: 10.3389/fimmu.2014.00514. PubMed DOI PMC

Ferrario C., Leggio L., Leone R., Di Benedetto C., Guidetti L., Coccè V., Ascagni M., Bonasoro F., La Porta C.A.M., Candia Carnevali M.D., et al. Marine-derived collagen biomaterials from echinoderm connective tissues. Mar. Environ. Res. 2017;128:46–57. doi: 10.1016/j.marenvres.2016.03.007. PubMed DOI

Mathew-Steiner S.S., Roy S., Sen C.K. Collagen in Wound Healing. Bioengineering. 2021;8:63. doi: 10.3390/bioengineering8050063. PubMed DOI PMC

Chattopadhyay S., Raines R.T. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101:821–833. doi: 10.1002/bip.22486. PubMed DOI PMC

Xue M., Jackson C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care. 2015;4:119–136. doi: 10.1089/wound.2013.0485. PubMed DOI PMC

Deng X., Gould M., Ali M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022;110:2542–2573. doi: 10.1002/jbm.b.35086. PubMed DOI PMC

Zamboni F., Wong C.K., Collins M.N. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact. Mater. 2023;19:458–473. doi: 10.1016/j.bioactmat.2022.04.023. PubMed DOI PMC

Della Sala F., Longobardo G., Fabozzi A., di Gennaro M., Borzacchiello A. Hyaluronic Acid-Based Wound Dressing with Antimicrobial Properties for Wound Healing Application. Appl. Sci. 2022;12:3091. doi: 10.3390/app12063091. DOI

Giammona G., Giovanna P., Palumbo Fabio S., Maraldi S., Scarponi S., Romanò Carlo L. Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics and Trauma: From Basic Research to Clinical Applications. In: Sajjad H., Adnan H., editors. Hydrogels. IntechOpen; Rijeka, Croatia: 2018. Chapter 9.

Misra S., Hascall V.C., Markwald R.R., Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015;6:201. doi: 10.3389/fimmu.2015.00201. PubMed DOI PMC

Jiang D., Liang J., Noble P.W. Hyaluronan as an Immune Regulator in Human Diseases. Physiol. Rev. 2011;91:221–264. doi: 10.1152/physrev.00052.2009. PubMed DOI PMC

Tolg C., McCarthy J.B., Yazdani A., Turley E.A. Hyaluronan and RHAMM in Wound Repair and the “Cancerization” of Stromal Tissues. BioMed Res. Int. 2014;2014:103923. doi: 10.1155/2014/103923. PubMed DOI PMC

Spampinato S.F., Caruso G.I., De Pasquale R., Sortino M.A., Merlo S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals. 2020;13:60. doi: 10.3390/ph13040060. PubMed DOI PMC

Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018;10:701. doi: 10.3390/polym10070701. PubMed DOI PMC

Lee M., Han S.H., Choi W.J., Chung K.H., Lee J.W. Hyaluronic acid dressing (Healoderm) in the treatment of diabetic foot ulcer: A prospective, randomized, placebo-controlled, single-center study. Wound Repair Regen. 2016;24:581–588. doi: 10.1111/wrr.12428. PubMed DOI

Shah P., Inturi R., Anne D., Jadhav D., Viswambharan V., Khadilkar R., Dnyanmote A., Shahi S. Wagner’s Classification as a Tool for Treating Diabetic Foot Ulcers: Our Observations at a Suburban Teaching Hospital. Cureus. 2022;14:e21501. doi: 10.7759/cureus.21501. PubMed DOI PMC

Navya P.N., Daima H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3:1. doi: 10.1186/s40580-016-0064-z. PubMed DOI PMC

Hassan H., Sharma P., Hasan M.R., Singh S., Thakur D., Narang J. Gold nanomaterials—The golden approach from synthesis to applications. Mater. Sci. Energy Technol. 2022;5:375–390. doi: 10.1016/j.mset.2022.09.004. DOI

Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021;22:7202. doi: 10.3390/ijms22137202. PubMed DOI PMC

Navrotskaya A.G., Aleksandrova D.D., Krivoshapkina E.F., Sillanpää M., Krivoshapkin P.V. Hybrid Materials Based on Carbon Nanotubes and Nanofibers for Environmental Applications. Front. Chem. 2020;8:546. doi: 10.3389/fchem.2020.00546. PubMed DOI PMC

Cotta M.A. Quantum Dots and Their Applications: What Lies Ahead? ACS Appl. Nano Mater. 2020;3:4920–4924. doi: 10.1021/acsanm.0c01386. DOI

Huber D.L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;1:482–501. doi: 10.1002/smll.200500006. PubMed DOI

Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021;13:1642. doi: 10.3390/pharmaceutics13101642. PubMed DOI PMC

Faisal S., Jan H., Shah S.A., Shah S., Khan A., Akbar M.T., Rizwan M., Jan F., Wajidullah, Akhtar N., et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega. 2021;6:9709–9722. doi: 10.1021/acsomega.1c00310. PubMed DOI PMC

Scian A.N., Marturano M., Cagnoli V. New porous composite material—Characterization and properties. In: Sayari A., Jaroniec M., editors. Studies in Surface Science and Catalysis. Volume 129. Elsevier; Amsterdam, The Netherlands: 2000. pp. 701–710.

Mourycová J., Datta K.K.R., Procházková A., Plotěná M., Enev V., Smilek J., Másílko J., Pekař M. Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int. J. Biol. Macromol. 2018;111:680–684. doi: 10.1016/j.ijbiomac.2018.01.068. PubMed DOI

Li Z., Renneckar S., Barone J. Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose. 2010;17:57–68. doi: 10.1007/s10570-009-9363-4. DOI

Burroughs M.C., Schloemer T.H., Congreve D.N., Mai D.J. Gelation Dynamics during Photo-Cross-Linking of Polymer Nanocomposite Hydrogels. ACS Polym. Au. 2023;3:217–227. doi: 10.1021/acspolymersau.2c00051. PubMed DOI PMC

Abdelrahman R.M., Abdel-Mohsen A.M., Zboncak M., Frankova J., Lepcio P., Kobera L., Steinhart M., Pavlinak D., Spotaz Z., Sklenářévá R., et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr. Polym. 2020;235:115951. doi: 10.1016/j.carbpol.2020.115951. PubMed DOI

Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C. 2019;101:487–498. doi: 10.1016/j.msec.2019.03.093. PubMed DOI

Alven S., Aderibigbe B.A. Hyaluronic Acid-Based Scaffolds as Potential Bioactive Wound Dressings. Polymers. 2021;13:2102. doi: 10.3390/polym13132102. PubMed DOI PMC

Krishnan P.D., Banas D., Durai R., Kabanov D., Hosnedlová B., Kepinska M., Fernández C., Ruttkay-Nedecky B., Nguyen H., Farid A., et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics. 2020;12:821. doi: 10.3390/pharmaceutics12090821. PubMed DOI PMC

Hasan K.M.F., Xiaoyi L., Shaoqin Z., Horváth P.G., Bak M., Bejó L., Sipos G., Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023—A review on game changing materials. Heliyon. 2022;8:e12322. doi: 10.1016/j.heliyon.2022.e12322. PubMed DOI PMC

Shao Y., Wu C., Wu T., Yuan C., Chen S., Ding T., Ye X., Hu Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018;111:1281–1292. doi: 10.1016/j.ijbiomac.2018.01.012. PubMed DOI

Salem S.S., Hashem A.H., Sallam A.-A.M., Doghish A.S., Al-Askar A.A., Arishi A.A., Shehabeldine A.M. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers. 2022;14:3352. doi: 10.3390/polym14163352. PubMed DOI PMC

Yakout S.M., Mostafa A.A. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int. J. Clin. Exp. Med. 2015;8:3538–3544. PubMed PMC

Abdel-Mohsen A.M., Hrdina R., Burgert L., Krylová G., Abdel-Rahman R., Krejcova A., Steinhart M., Benes L. Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr. Polym. 2012;89:411–422. doi: 10.1016/j.carbpol.2012.03.022. PubMed DOI

Sanchez-Cano C., Alvarez-Puebla R.A., Abendroth J.M., Beck T., Blick R., Cao Y., Caruso F., Chakraborty I., Chapman H.N., Chen C., et al. X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano. 2021;15:3754–3807. doi: 10.1021/acsnano.0c09563. PubMed DOI PMC

Salmon P., Sasov A. Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials: Techniques and Applications. Springer; Berlin/Heidelberg, Germany: 2007. Application of Nano-CT and High-Resolution Micro-CT to Study Bone Quality and Ultrastructure, Scaffold Biomaterials and Vascular Networks; pp. 323–331.

Lu B., Lu F., Zou Y., Liu J., Rong B., Li Z., Dai F., Wu D., Lan G. In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydr. Polym. 2017;173:556–565. doi: 10.1016/j.carbpol.2017.06.035. PubMed DOI

Li L.-S., Ren B., Yang X., Cai Z.-C., Zhao X.-J., Zhao M.-X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals. 2021;14:101. doi: 10.3390/ph14020101. PubMed DOI PMC

Posocco B., Dreussi E., De Santa J., Toffoli G., Abrami M., Musiani F., Grassi M., Farra R., Tonon F., Grassi G., et al. Polysaccharides for the Delivery of Antitumor Drugs. Materials. 2015;8:2569–2615. doi: 10.3390/ma8052569. DOI

Yang X., Wang B., Peng D., Nie X., Wang J., Yu C.-Y., Wei H. Hyaluronic Acid-Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Adv. NanoBiomed Res. 2022;2:2200124. doi: 10.1002/anbr.202200124. DOI

Hussain Z., Pandey M., Choudhury H., Pang C., Xian T., Kaur T., Wei Jia G., Gorain B. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics. J. Drug Deliv. Sci. Technol. 2020;57:101747. doi: 10.1016/j.jddst.2020.101747. DOI

Fahmy H.M., Aly A.A., Abou-Okeil A. A non-woven fabric wound dressing containing layer-by-layer deposited hyaluronic acid and chitosan. Int. J. Biol. Macromol. 2018;114:929–934. doi: 10.1016/j.ijbiomac.2018.03.149. PubMed DOI

Xu X., Jha A.K., Harrington D.A., Farach-Carson M.C., Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294. doi: 10.1039/c2sm06463d. PubMed DOI PMC

Nikolova M.P., Chavali M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019;4:271–292. doi: 10.1016/j.bioactmat.2019.10.005. PubMed DOI PMC

Zhu C., Fan D., Wang Y. Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering. Mater. Sci. Eng. C. 2014;34:393–401. doi: 10.1016/j.msec.2013.09.044. PubMed DOI

Seidlits S.K., Liang J., Bierman R.D., Sohrabi A., Karam J., Holley S.M., Cepeda C., Walthers C.M. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J. Biomed. Mater. Res. Part A. 2019;107:704–718. doi: 10.1002/jbm.a.36603. PubMed DOI PMC

George J., Hsu C.-C., Nguyen L.T.B., Ye H., Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol. Adv. 2020;42:107370. doi: 10.1016/j.biotechadv.2019.03.009. PubMed DOI

Feng C., Deng L., Yong Y.-Y., Wu J.-M., Qin D.-L., Yu L., Zhou X.-G., Wu A.-G. The Application of Biomaterials in Spinal Cord Injury. Int. J. Mol. Sci. 2023;24:816. doi: 10.3390/ijms24010816. PubMed DOI PMC

Trombino S., Servidio C., Curcio F., Cassano R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics. 2019;11:407. doi: 10.3390/pharmaceutics11080407. PubMed DOI PMC

Farasati Far B., Isfahani A.A., Nasiriyan E., Pourmolaei A., Mahmoudvand G., Karimi Rouzbahani A., Namiq Amin M., Naimi-Jamal M.R. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. Livers. 2023;3:161–189. doi: 10.3390/livers3020012. DOI

Catanzano O., D’Esposito V., Acierno S., Ambrosio M.R., De Caro C., Avagliano C., Russo P., Russo R., Miro A., Ungaro F., et al. Alginate–hyaluronan composite hydrogels accelerate wound healing process. Carbohydr. Polym. 2015;131:407–414. doi: 10.1016/j.carbpol.2015.05.081. PubMed DOI

Hsieh H.-Y., Lin W.-Y., Lee A.L., Li Y.-C., Chen Y.J., Chen K.-C., Young T.-H. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. PLoS ONE. 2020;15:e0227784. doi: 10.1371/journal.pone.0227784. PubMed DOI PMC

Peng X., Ding C., Zhao Y., Hao M., Liu W., Yang M., Xiao F., Zheng Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front. Bioeng. Biotechnol. 2022;10:831007. doi: 10.3389/fbioe.2022.831007. PubMed DOI PMC

Yang R., Huang J., Zhang W., Xue W., Jiang Y., Li S., Wu X., Xu H., Ren J., Chi B. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr. Polym. 2021;273:118607. doi: 10.1016/j.carbpol.2021.118607. PubMed DOI

Humaira, Raza Bukhari S.A., Shakir H.A., Khan M., Saeed S., Ahmad I., Muzammil K., Franco M., Irfan M., Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front. Chem. 2022;10:1092123. doi: 10.3389/fchem.2022.1092123. PubMed DOI PMC

Ding Y.-W., Zhang X.-W., Mi C.-H., Qi X.-Y., Zhou J., Wei D.-X. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater. Med. 2023;4:59–68. doi: 10.1016/j.smaim.2022.07.003. DOI

Garcia-Fuentes M., Meinel A.J., Hilbe M., Meinel L., Merkle H.P. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials. 2009;30:5068–5076. doi: 10.1016/j.biomaterials.2009.06.008. PubMed DOI

Khunmanee S., Jeong Y., Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 2017;8:2041731417726464. doi: 10.1177/2041731417726464. PubMed DOI PMC

Valachová K., Šoltés L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. Int. J. Mol. Sci. 2021;22:7077. doi: 10.3390/ijms22137077. PubMed DOI PMC

Xue N., Ding X., Huang R., Jiang R., Huang H., Pan X., Min W., Chen J., Duan J.-A., Liu P., et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals. 2022;15:879. doi: 10.3390/ph15070879. PubMed DOI PMC

Zheng Z., Patel M., Patel R. Hyaluronic acid-based materials for bone regeneration: A review. React. Funct. Polym. 2022;171:105151. doi: 10.1016/j.reactfunctpolym.2021.105151. DOI

Tognana E., Borrione A., De Luca C., Pavesio A. Hyalograft® C: Hyaluronan-Based Scaffolds in Tissue-Engineered Cartilage. Cells Tissues Organs. 2007;186:97–103. doi: 10.1159/000102539. PubMed DOI

Yue B. Biology of the Extracellular Matrix: An Overview. J. Glaucoma. 2014;23:S20–S23. doi: 10.1097/IJG.0000000000000108. PubMed DOI PMC

Fan Z., Zhang F., Liu T., Zuo B.Q. Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. Int. J. Biol. Macromol. 2014;65:516–523. doi: 10.1016/j.ijbiomac.2014.01.058. PubMed DOI

Yuan H., Tank M., Alsofyani A., Shah N., Talati N., LoBello J.C., Kim J.R., Oonuki Y., de la Motte C.A., Cowman M.K. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology. 2013;23:1270–1280. doi: 10.1093/glycob/cwt064. PubMed DOI PMC

Sudhakar K., Ji S.M., Kummara M.R., Han S.S. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics. 2022;14:2235. doi: 10.3390/pharmaceutics14102235. PubMed DOI PMC

Chmelař J., Brtková B., Laštovičková L., Bažantová J., Hermannová M., Kulhánek J., Mrázek J., Velebný V. Lauroyl hyaluronan films for local drug delivery: Preparation and factors influencing the release of small molecules. Int. J. Pharm. 2021;608:121111. doi: 10.1016/j.ijpharm.2021.121111. PubMed DOI

Li Y., Jiang H., Zheng W., Gong N., Chen L., Jiang X., Yang G. Correction: Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J. Mater. Chem. B. 2019;7:1962. PubMed

Castro K.C.D., Burga-Sánchez J., Nogueira Campos M.G., Mei L.H.I. Water-based synthesis of photocrosslinked hyaluronic acid/polyvinyl alcohol membranes via electrospinning. RSC Adv. 2020;10:31271–31279. doi: 10.1039/D0RA04950F. PubMed DOI PMC

Stodolak E., Rozmus K., Dzierzkowska E., Zych Ł., Rapacz-Kmita A., Gargas M., Kolaczkowska E., Cieniawska M., Książek K., Ścisłowska-Czarnecka A. The membrane with polylactide and hyaluronic fibers for skin substitute. Acta Bioeng. Biomech. 2018;20:91–99. PubMed

Abdel-Mohsen A.M., Pavliňák D., Čileková M., Lepcio P., Abdel-Rahman R.M., Jančář J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2019;139:730–739. doi: 10.1016/j.ijbiomac.2019.07.205. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...