Marine Biomaterials: Hyaluronan
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37623707
PubMed Central
PMC10456333
DOI
10.3390/md21080426
PII: md21080426
Knihovny.cz E-zdroje
- Klíčová slova
- characterization, composites, extraction process, hyaluronan, marine sources, wound healing applications,
- MeSH
- biokompatibilní materiály farmakologie MeSH
- hojení ran MeSH
- kyselina hyaluronová * farmakologie MeSH
- obvazy * MeSH
- tkáňové inženýrství MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- kyselina hyaluronová * MeSH
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Zobrazit více v PubMed
Khrunyk Y., Lach S., Petrenko I., Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar. Drugs. 2020;18:589. doi: 10.3390/md18120589. PubMed DOI PMC
Abdel-Mohsen A.M., Jancar J., Abdel-Rahman R.M., Vojtek L., Hyršl P., Dušková M., Nejezchlebová H. A novel in situ Silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations. Int. J. Pharm. 2017;520:241–253. doi: 10.1016/j.ijpharm.2017.02.003. PubMed DOI
Zhang H., Wu X., Quan L., Ao Q. Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar. Drugs. 2022;20:372. doi: 10.3390/md20060372. PubMed DOI PMC
Kim K.S., Kim S., Beack S., Yang J.-A., Yun S.H., Hahn S.K. In vivo real-time confocal microscopy for target-specific delivery of hyaluronic acid-quantum dot conjugates. Nanomed. Nanotechnol. Biol. Med. 2012;8:1070–1073. doi: 10.1016/j.nano.2012.05.014. PubMed DOI
Thomas R.G., Moon M.J., Lee H., Sasikala A.R.K., Kim C.S., Park I.-K., Jeong Y.Y. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr. Polym. 2015;131:439–446. doi: 10.1016/j.carbpol.2015.06.010. PubMed DOI
Romano G., Almeida M., Varela Coelho A., Cutignano A., Gonçalves L.G., Hansen E., Khnykin D., Mass T., Ramšak A., Rocha M.S., et al. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar. Drugs. 2022;20:219. doi: 10.3390/md20040219. PubMed DOI PMC
Azuma N., Ikoma T., Osaka A., Tanaka J. Effect of hyaluronic acid on the rheology of zinc/malic acid hydrogels. Trans. 7th World Biomater. Congr. 2004;24:703–707.
Sionkowska A., Kaczmarek B. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int. J. Biol. Macromol. 2017;102:658–666. doi: 10.1016/j.ijbiomac.2017.03.196. PubMed DOI
Dell’Anno F., Sansone C., Ianora A., Dell’Anno A. Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Mar. Environ. Res. 2018;137:196–205. doi: 10.1016/j.marenvres.2018.03.010. PubMed DOI
Sgorla D., Almeida A., Azevedo C., Bunhak ÿ.J., Sarmento B., Cavalcanti O.A. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes. Int. J. Pharm. 2016;511:380–389. doi: 10.1016/j.ijpharm.2016.07.033. PubMed DOI
Tennakoon P., Chandika P., Yi M., Jung W.-K. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative. iScience. 2023;26:106404. doi: 10.1016/j.isci.2023.106404. PubMed DOI PMC
Lalevée G., Sudre G., Montembault A., Meadows J., Malaise S., Crépet A., David L., Delair T. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydr. Polym. 2016;154:86–95. doi: 10.1016/j.carbpol.2016.08.007. PubMed DOI
Payne W.M., Svechkarev D., Kyrychenko A., Mohs A.M. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr. Polym. 2018;182:132–141. doi: 10.1016/j.carbpol.2017.10.054. PubMed DOI PMC
Wang L., Li W., Qin S. Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications. Polymers. 2021;13:2482. doi: 10.3390/polym13152482. PubMed DOI PMC
Aly A.S., Abdel-Mohsen A.M., Hrdina R., Abou-Okeil A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. J. Nat. Fibers. 2011;8:176–188. doi: 10.1080/15440478.2011.602243. DOI
Abdel-Mohsen A.M., Hrdina R., Burgert L., Abdel-Rahman R.M., Hašová M., Šmejkalová D., Kolář M., Pekar M., Aly A.S. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydr. Polym. 2013;92:1177–1187. doi: 10.1016/j.carbpol.2012.08.098. PubMed DOI
Kulpetchdara K., Limpichaipanit A., Rujijanagul G., Randorn C., Chokethawai K. Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel. Surf. Coat. Technol. 2016;306:181–186. doi: 10.1016/j.surfcoat.2016.05.069. DOI
Barabadi H., Ovais M., Shinwari Z.K., Saravanan M. Anti-cancer green bionanomaterials: Present status and future prospects. Green Chem. Lett. Rev. 2017;10:285–314. doi: 10.1080/17518253.2017.1385856. DOI
Domingues R.M.A., Silva M., Gershovich P., Betta S., Babo P., Caridade S.G., Mano J.F., Motta A., Reis R.L., Gomes M.E. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chem. 2015;26:1571–1581. doi: 10.1021/acs.bioconjchem.5b00209. PubMed DOI
Li Y., Qing S., Zhou J., Yang G. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Carbohydr. Polym. 2014;103:496–501. doi: 10.1016/j.carbpol.2013.12.059. PubMed DOI
Fouda M.M.G., Abdel-Mohsen A.M., Ebaid H., Hassan I., Al-Tamimi J., Abdel-Rahman R.M., Metwalli A., Alhazza I., Rady A., El-Faham A., et al. Wound healing of different molecular weight of hyaluronan; in-vivo study. Int. J. Biol. Macromol. 2016;89:582–591. doi: 10.1016/j.ijbiomac.2016.05.021. PubMed DOI
Liu X., Gao C., Gu J., Jiang Y., Yang X., Li S., Gao W., An T., Duan H., Fu J., et al. Hyaluronic Acid Stabilized Iodine-Containing Nanoparticles with Au Nanoshell Coating for X-ray CT Imaging and Photothermal Therapy of Tumors. ACS Appl. Mater. Interfaces. 2016;8:27622–27631. doi: 10.1021/acsami.6b11918. PubMed DOI
Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC
Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI
Snetkov P., Zakharova K., Morozkina S., Olekhnovich R., Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers. 2020;12:1800. doi: 10.3390/polym12081800. PubMed DOI PMC
Fakhari A., Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081–7092. doi: 10.1016/j.actbio.2013.03.005. PubMed DOI PMC
Prestwich G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release. 2011;155:193–199. doi: 10.1016/j.jconrel.2011.04.007. PubMed DOI PMC
Vázquez J.A., Rodríguez-Amado I., Montemayor M.I., Fraguas J., González M.D., Murado M.A. Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review. Mar. Drugs. 2013;11:747–774. doi: 10.3390/md11030747. PubMed DOI PMC
Bai M., Han W., Zhao X., Wang Q., Gao Y., Deng S. Glycosaminoglycans from a Sea Snake (Lapemis curtus): Extraction, Structural Characterization and Antioxidant Activity. Mar. Drugs. 2018;16:170. doi: 10.3390/md16050170. PubMed DOI PMC
Giji S., Arumugam M. Chapter Four—Isolation and Characterization of Hyaluronic Acid from Marine Organisms. In: Kim S.-K., editor. Advances in Food and Nutrition Research. Volume 72. Academic Press; Cambridge, MA, USA: 2014. pp. 61–77. PubMed
Abdallah M.M., Fernández N., Matias A.A., Bronze M.d.R. Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr. Polym. 2020;243:116441. doi: 10.1016/j.carbpol.2020.116441. PubMed DOI
Sarangi M.K., Rao M.E.B., Parcha V., Yi D.K., Nanda S.S. Chapter 22—Marine polysaccharides for drug delivery in tissue engineering. In: Hasnain M.S., Nayak A.K., editors. Natural Polysaccharides in Drug Delivery and Biomedical Applications. Academic Press; Cambridge, MA, USA: 2019. pp. 513–530.
Juncan A.M., Moisă D.G., Santini A., Morgovan C., Rus L.-L., Vonica-Țincu A.L., Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules. 2021;26:4429. doi: 10.3390/molecules26154429. PubMed DOI PMC
Rau L.-R., Tsao S.-W., Liaw J.-W., Tsai S.-W. Selective Targeting and Restrictive Damage for Nonspecific Cells by Pulsed Laser-Activated Hyaluronan-Gold Nanoparticles. Biomacromolecules. 2016;17:2514–2521. doi: 10.1021/acs.biomac.6b00386. PubMed DOI
Rodriguez-Marquez C.D., Arteaga-Marin S., Rivas-Sánchez A., Autrique-Hernández R., Castro-Muñoz R. A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid. Int. J. Mol. Sci. 2022;23:6038. doi: 10.3390/ijms23116038. PubMed DOI PMC
Chascall V., Calabro A., Midura R.J., Yanagishita M. Methods in Enzymology. Volume 230. Academic Press; Cambridge, MA, USA: 1994. [24] Isolation and characterization of proteoglycans; pp. 390–417. PubMed
Scott J.E. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem. Anal. 1960;8:145–197. PubMed
Boas N.F. Isolation of hyaluronic acid from the cocks comb. J. Biol. Chem. 1949;181:573–575. doi: 10.1016/S0021-9258(18)56578-9. PubMed DOI
Lim C., Yusoff S., Ng C.G., Lim P.E., Ching Y.C. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng. 2021;9:105895. doi: 10.1016/j.jece.2021.105895. DOI
Lin R., Kwok J.C.F., Crespo D., Fawcett J.W. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J. Neurochem. 2008;104:400–408. doi: 10.1111/j.1471-4159.2007.05066.x. PubMed DOI
Murado M.A., Fraguas J., Montemayor M.I., Vázquez J.A., González P. Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochem. Eng. J. 2010;49:126–132. doi: 10.1016/j.bej.2009.12.006. DOI
Volpi N., Maccari F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie. 2003;85:619–625. doi: 10.1016/S0300-9084(03)00083-X. PubMed DOI
Li W., Zhou C., Fu Y., Chen T., Liu X., Zhang Z., Gong T. Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm. Sin. B. 2020;10:693–710. doi: 10.1016/j.apsb.2019.07.003. PubMed DOI PMC
Underhill C.B., Chi-Rosso G., Toole B.P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J. Biol. Chem. 1983;258:8086–8091. doi: 10.1016/S0021-9258(20)82031-6. PubMed DOI
Välimaa A.-L., Mäkinen S., Mattila P., Marnila P., Pihlanto A., Mäki M., Hiidenhovi J. Fish and fish side streams are valuable sources of high-value components. Food Qual. Saf. 2019;3:209–226. doi: 10.1093/fqsafe/fyz024. DOI
Weng H., Jia W., Li M., Chen Z. New injectable chitosan-hyaluronic acid based hydrogels for hemostasis and wound healing. Carbohydr. Polym. 2022;294:119767. doi: 10.1016/j.carbpol.2022.119767. PubMed DOI
Townsend M., Davies K., Hanley N., Hewitt J.E., Lundquist C.J., Lohrer A.M. The Challenge of Implementing the Marine Ecosystem Service Concept. Front. Mar. Sci. 2018;5:359. doi: 10.3389/fmars.2018.00359. DOI
Matsumura G., De Salegui M., Herp A., Pigman W. The preparation of hyaluronic acid from bovine synovial fluid. Biochim. Biophys. Acta. 1963;69:574–576. doi: 10.1016/0006-3002(63)91314-3. PubMed DOI
Murado M.A., Montemayor M.I., Cabo M.L., Vázquez J.A., González M.P. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process. 2012;90:491–498. doi: 10.1016/j.fbp.2011.11.002. DOI
Takasugi M., Firsanov D., Tombline G., Ning H., Ablaeva J., Seluanov A., Gorbunova V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 2020;11:2376. doi: 10.1038/s41467-020-16050-w. PubMed DOI PMC
Michalczyk M., Humeniuk E., Adamczuk G., Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int. J. Mol. Sci. 2023;24:103. doi: 10.3390/ijms24010103. PubMed DOI PMC
Ruppert S.M., Hawn T.R., Arrigoni A., Wight T.N., Bollyky P.L. Tissue integrity signals communicated by high-molecular-weight hyaluronan and the resolution of inflammation. Immunol. Res. 2014;58:186–192. doi: 10.1007/s12026-014-8495-2. PubMed DOI PMC
Hoarau A., Polette M., Coraux C. Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules. 2022;12:658. doi: 10.3390/biom12050658. PubMed DOI PMC
Fassini D., Wilkie I.C., Pozzolini M., Ferrario C., Sugni M., Rocha M.S., Giovine M., Bonasoro F., Silva T.H., Reis R.L. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules. 2021;22:1815–1834. doi: 10.1021/acs.biomac.1c00013. PubMed DOI
Park H.-Y., Kweon D.-K., Kim J.-K. Molecular weight-dependent hyaluronic acid permeability and tight junction modulation in human buccal TR146 cell monolayers. Int. J. Biol. Macromol. 2023;227:182–192. doi: 10.1016/j.ijbiomac.2022.12.106. PubMed DOI
Yasin A., Ren Y., Li J., Sheng Y., Cao C., Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022;10:910290. doi: 10.3389/fbioe.2022.910290. PubMed DOI PMC
Abdel-Rahman R.M., Frankova J., Sklenarova R., Kapralkova L., Kelnar I., Abdel-Mohsen A.M. Hyaluronan/zinc oxide nanocomposite-based Membrane: Preparation, Characterization, In vitro and In vivo Evaluation. ACS Appl. Polym. Mater. 2022;4:7723–7738. doi: 10.1021/acsapm.2c01296. DOI
Zhu Z., Yin-Min W., Jun Y., Xu-Song L. Hyaluronic acid: A versatile biomaterial in tissue engineering. Plast. Aesthetic Res. 2017;4:219–227. doi: 10.20517/2347-9264.2017.71. DOI
Ratajczak P., Maciejak O., Kopciuch D., Paczkowska A., Zaprutko T., Kus K. Directions of hyaluronic acid application in cosmetology. J. Cosmet. Dermatol. 2023;22:862–871. doi: 10.1111/jocd.15485. PubMed DOI
Damodarasamy M., Johnson R.S., Bentov I., MacCoss M.J., Vernon R.B., Reed M.J. Hyaluronan enhances wound repair and increases collagen III in aged dermal wounds. Wound Repair Regen. 2014;22:521–526. doi: 10.1111/wrr.12192. PubMed DOI PMC
Campoccia D., Doherty P., Radice M., Brun P., Abatangelo G., Williams D.F. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19:2101–2127. doi: 10.1016/S0142-9612(98)00042-8. PubMed DOI
Huerta-Angeles G., Šmejkalová D., Chládková D., Ehlová T., Buffa R., Velebný V. Synthesis of highly substituted amide hyaluronan derivatives with tailored degree of substitution and their crosslinking via click chemistry. Carbohydr. Polym. 2011;84:1293–1300. doi: 10.1016/j.carbpol.2011.01.021. DOI
Montgomery R., Nag S. Periodate oxidation of hyaluronic acid. Biochim. Biophys. Acta. 1963;74:300–302. doi: 10.1016/0006-3002(63)91369-6. DOI
Arpicco S., Milla P., Stella B., Dosio F. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules. 2014;19:3193–3230. doi: 10.3390/molecules19033193. PubMed DOI PMC
Hintze V., Schnabelrauch M., Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front. Chem. 2022;10:830671. doi: 10.3389/fchem.2022.830671. PubMed DOI PMC
Kristiansen K.A., Potthast A., Christensen B.E. Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 2010;345:1264–1271. doi: 10.1016/j.carres.2010.02.011. PubMed DOI
Jiang B., Drouet E., Milas M., Rinaudo M. Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr. Res. 2000;327:455–461. doi: 10.1016/S0008-6215(00)00059-8. PubMed DOI
Santhanam S., Liang J., Baid R., Ravi N. Investigating thiol-modification on hyaluronan via carbodiimide chemistry using response surface methodology. J. Biomed. Mater. Res. Part A. 2015;103:2300–2308. doi: 10.1002/jbm.a.35366. PubMed DOI PMC
Dovedytis M., Liu Z.J., Bartlett S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020;1:102–113. doi: 10.1016/j.engreg.2020.10.001. DOI
Babasola O., Rees-Milton K.J., Bebe S., Wang J., Anastassiades T.P. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages. J. Biol. Chem. 2014;289:24779–24791. doi: 10.1074/jbc.M113.515783. PubMed DOI PMC
Bebe S., Anastassiades T. Chemical Modification of the N-Acetyl Moieties of Hyaluronic Acid from Streptococcus equi for Studies in Cytokine Production. In: Brockhausen I., editor. Bacterial Polysaccharides: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 99–113. PubMed
Guo S., DiPietro L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125. PubMed DOI PMC
Wallace H.A., Basehore B.M., Zito P.M. Wound Healing Phases. StatPearls Publishing; Treasure Island, FL, USA: 2022. PubMed
Frykberg R.G., Banks J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care. 2015;4:560–582. doi: 10.1089/wound.2015.0635. PubMed DOI PMC
Li H., Xue Y., Jia B., Bai Y., Zuo Y., Wang S., Zhao Y., Yang W., Tang H. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 2018;188:92–100. doi: 10.1016/j.carbpol.2018.01.102. PubMed DOI
Suo H., Hussain M., Wang H., Zhou N., Tao J., Jiang H., Zhu J. Injectable and pH-Sensitive Hyaluronic Acid-Based Hydrogels with On-Demand Release of Antimicrobial Peptides for Infected Wound Healing. Biomacromolecules. 2021;22:3049–3059. doi: 10.1021/acs.biomac.1c00502. PubMed DOI
Li M., Liang Y., Liang Y., Pan G., Guo B. Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem. Eng. J. 2022;427:132039. doi: 10.1016/j.cej.2021.132039. DOI
Liu Y., Niu H., Wang C., Yang X., Li W., Zhang Y., Ma X., Xu Y., Zheng P., Wang J., et al. Bio-inspired, bio-degradable adenosine 5′-diphosphate-modified hyaluronic acid coordinated hydrophobic undecanal-modified chitosan for hemostasis and wound healing. Bioact. Mater. 2022;17:162–177. doi: 10.1016/j.bioactmat.2022.01.025. PubMed DOI PMC
Lei H., Zhu C., Fan D. Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair. Carbohydr. Polym. 2020;239:116249. doi: 10.1016/j.carbpol.2020.116249. PubMed DOI
Alemzadeh E., Oryan A., Mohammadi A.A. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020;108:555–567. doi: 10.1002/jbm.b.34411. PubMed DOI
Hu B., Gao M., Boakye-Yiadom K.O., Ho W., Yu W., Xu X., Zhang X.-Q. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact. Mater. 2021;6:4592–4606. doi: 10.1016/j.bioactmat.2021.04.040. PubMed DOI PMC
Liu S., Zhang Q., Yu J., Shao N., Lu H., Guo J., Qiu X., Zhou D., Huang Y. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Adv. Healthc. Mater. 2020;9:2000198. doi: 10.1002/adhm.202000198. PubMed DOI
Yuan Y., Fan D., Shen S., Ma X. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 2022;433:133859. doi: 10.1016/j.cej.2021.133859. DOI
Gao X., Huang R., Jiao Y., Groth T., Yang W., Tu C., Li H., Gong F., Chu J., Zhao M. Enhanced wound healing in diabetic mice by hyaluronan/chitosan multilayer-coated PLLA nanofibrous mats with sustained release of insulin. Appl. Surf. Sci. 2022;576:151825. doi: 10.1016/j.apsusc.2021.151825. DOI
Li Z., Zhao Y., Liu H., Ren M., Wang Z., Wang X., Liu H., Feng Y., Lin Q., Wang C., et al. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Mater. Des. 2021;210:110104. doi: 10.1016/j.matdes.2021.110104. DOI
Abdel-Rahman R.M., Abdel-Mohsen A.M., Hrdina R., Burgert L., Fohlerova Z., Pavliňák D., Sayed O.N., Jancar J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int. J. Biol. Macromol. 2016;89:725–736. doi: 10.1016/j.ijbiomac.2016.04.087. PubMed DOI
Kim N.-G., Chandika P., Kim S.-C., Won D.-H., Park W.S., Choi I.-W., Lee S.G., Kim Y.-M., Jung W.-K. Fabrication and characterization of ferric ion cross-linked hyaluronic acid/pectin-based injectable hydrogel with antibacterial ability. Polymer. 2023;271:125808. doi: 10.1016/j.polymer.2023.125808. DOI
Guo F., Liu Y., Chen S., Lin Y., Yue Y. A Schiff base hydrogel dressing loading extracts from Periplaneta americana Myristica fragrans for diabetic wound healing. Int. J. Biol. Macromol. 2023;230:123256. doi: 10.1016/j.ijbiomac.2023.123256. PubMed DOI
Lv Y., Cai F., He Y., Li L., Huang Y., Yang J., Zheng Y., Shi X. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing. Acta Biomater. 2023;159:95–110. doi: 10.1016/j.actbio.2023.01.045. PubMed DOI
Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12:735. doi: 10.3390/pharmaceutics12080735. PubMed DOI PMC
Schaffer C.J., Nanney L.B. Cell Biology of Wound Healing. In: Jeon K.W., editor. International Review of Cytology. Volume 169. Academic Press; Cambridge, MA, USA: 1996. pp. 151–181. PubMed
Enoch S., Leaper D.J. Basic science of wound healing. Surgery. 2005;23:37–42.
Periayah M.H., Halim A.S., Mat Saad A.Z. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int. J. Hematol. Oncol. Stem. Cell Res. 2017;11:319–327. PubMed PMC
Ellis S., Lin E.J., Tartar D. Immunology of Wound Healing. Curr. Dermatol. Rep. 2018;7:350–358. doi: 10.1007/s13671-018-0234-9. PubMed DOI PMC
Krzyszczyk P., Schloss R., Palmer A., Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018;9:419. doi: 10.3389/fphys.2018.00419. PubMed DOI PMC
Ginhoux F., Schultze J.L., Murray P.J., Ochando J., Biswas S.K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 2016;17:34–40. doi: 10.1038/ni.3324. PubMed DOI
Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014;5:514. doi: 10.3389/fimmu.2014.00514. PubMed DOI PMC
Ferrario C., Leggio L., Leone R., Di Benedetto C., Guidetti L., Coccè V., Ascagni M., Bonasoro F., La Porta C.A.M., Candia Carnevali M.D., et al. Marine-derived collagen biomaterials from echinoderm connective tissues. Mar. Environ. Res. 2017;128:46–57. doi: 10.1016/j.marenvres.2016.03.007. PubMed DOI
Mathew-Steiner S.S., Roy S., Sen C.K. Collagen in Wound Healing. Bioengineering. 2021;8:63. doi: 10.3390/bioengineering8050063. PubMed DOI PMC
Chattopadhyay S., Raines R.T. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101:821–833. doi: 10.1002/bip.22486. PubMed DOI PMC
Xue M., Jackson C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care. 2015;4:119–136. doi: 10.1089/wound.2013.0485. PubMed DOI PMC
Deng X., Gould M., Ali M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022;110:2542–2573. doi: 10.1002/jbm.b.35086. PubMed DOI PMC
Zamboni F., Wong C.K., Collins M.N. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact. Mater. 2023;19:458–473. doi: 10.1016/j.bioactmat.2022.04.023. PubMed DOI PMC
Della Sala F., Longobardo G., Fabozzi A., di Gennaro M., Borzacchiello A. Hyaluronic Acid-Based Wound Dressing with Antimicrobial Properties for Wound Healing Application. Appl. Sci. 2022;12:3091. doi: 10.3390/app12063091. DOI
Giammona G., Giovanna P., Palumbo Fabio S., Maraldi S., Scarponi S., Romanò Carlo L. Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics and Trauma: From Basic Research to Clinical Applications. In: Sajjad H., Adnan H., editors. Hydrogels. IntechOpen; Rijeka, Croatia: 2018. Chapter 9.
Misra S., Hascall V.C., Markwald R.R., Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015;6:201. doi: 10.3389/fimmu.2015.00201. PubMed DOI PMC
Jiang D., Liang J., Noble P.W. Hyaluronan as an Immune Regulator in Human Diseases. Physiol. Rev. 2011;91:221–264. doi: 10.1152/physrev.00052.2009. PubMed DOI PMC
Tolg C., McCarthy J.B., Yazdani A., Turley E.A. Hyaluronan and RHAMM in Wound Repair and the “Cancerization” of Stromal Tissues. BioMed Res. Int. 2014;2014:103923. doi: 10.1155/2014/103923. PubMed DOI PMC
Spampinato S.F., Caruso G.I., De Pasquale R., Sortino M.A., Merlo S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals. 2020;13:60. doi: 10.3390/ph13040060. PubMed DOI PMC
Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018;10:701. doi: 10.3390/polym10070701. PubMed DOI PMC
Lee M., Han S.H., Choi W.J., Chung K.H., Lee J.W. Hyaluronic acid dressing (Healoderm) in the treatment of diabetic foot ulcer: A prospective, randomized, placebo-controlled, single-center study. Wound Repair Regen. 2016;24:581–588. doi: 10.1111/wrr.12428. PubMed DOI
Shah P., Inturi R., Anne D., Jadhav D., Viswambharan V., Khadilkar R., Dnyanmote A., Shahi S. Wagner’s Classification as a Tool for Treating Diabetic Foot Ulcers: Our Observations at a Suburban Teaching Hospital. Cureus. 2022;14:e21501. doi: 10.7759/cureus.21501. PubMed DOI PMC
Navya P.N., Daima H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3:1. doi: 10.1186/s40580-016-0064-z. PubMed DOI PMC
Hassan H., Sharma P., Hasan M.R., Singh S., Thakur D., Narang J. Gold nanomaterials—The golden approach from synthesis to applications. Mater. Sci. Energy Technol. 2022;5:375–390. doi: 10.1016/j.mset.2022.09.004. DOI
Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021;22:7202. doi: 10.3390/ijms22137202. PubMed DOI PMC
Navrotskaya A.G., Aleksandrova D.D., Krivoshapkina E.F., Sillanpää M., Krivoshapkin P.V. Hybrid Materials Based on Carbon Nanotubes and Nanofibers for Environmental Applications. Front. Chem. 2020;8:546. doi: 10.3389/fchem.2020.00546. PubMed DOI PMC
Cotta M.A. Quantum Dots and Their Applications: What Lies Ahead? ACS Appl. Nano Mater. 2020;3:4920–4924. doi: 10.1021/acsanm.0c01386. DOI
Huber D.L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;1:482–501. doi: 10.1002/smll.200500006. PubMed DOI
Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021;13:1642. doi: 10.3390/pharmaceutics13101642. PubMed DOI PMC
Faisal S., Jan H., Shah S.A., Shah S., Khan A., Akbar M.T., Rizwan M., Jan F., Wajidullah, Akhtar N., et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega. 2021;6:9709–9722. doi: 10.1021/acsomega.1c00310. PubMed DOI PMC
Scian A.N., Marturano M., Cagnoli V. New porous composite material—Characterization and properties. In: Sayari A., Jaroniec M., editors. Studies in Surface Science and Catalysis. Volume 129. Elsevier; Amsterdam, The Netherlands: 2000. pp. 701–710.
Mourycová J., Datta K.K.R., Procházková A., Plotěná M., Enev V., Smilek J., Másílko J., Pekař M. Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int. J. Biol. Macromol. 2018;111:680–684. doi: 10.1016/j.ijbiomac.2018.01.068. PubMed DOI
Li Z., Renneckar S., Barone J. Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose. 2010;17:57–68. doi: 10.1007/s10570-009-9363-4. DOI
Burroughs M.C., Schloemer T.H., Congreve D.N., Mai D.J. Gelation Dynamics during Photo-Cross-Linking of Polymer Nanocomposite Hydrogels. ACS Polym. Au. 2023;3:217–227. doi: 10.1021/acspolymersau.2c00051. PubMed DOI PMC
Abdelrahman R.M., Abdel-Mohsen A.M., Zboncak M., Frankova J., Lepcio P., Kobera L., Steinhart M., Pavlinak D., Spotaz Z., Sklenářévá R., et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr. Polym. 2020;235:115951. doi: 10.1016/j.carbpol.2020.115951. PubMed DOI
Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C. 2019;101:487–498. doi: 10.1016/j.msec.2019.03.093. PubMed DOI
Alven S., Aderibigbe B.A. Hyaluronic Acid-Based Scaffolds as Potential Bioactive Wound Dressings. Polymers. 2021;13:2102. doi: 10.3390/polym13132102. PubMed DOI PMC
Krishnan P.D., Banas D., Durai R., Kabanov D., Hosnedlová B., Kepinska M., Fernández C., Ruttkay-Nedecky B., Nguyen H., Farid A., et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics. 2020;12:821. doi: 10.3390/pharmaceutics12090821. PubMed DOI PMC
Hasan K.M.F., Xiaoyi L., Shaoqin Z., Horváth P.G., Bak M., Bejó L., Sipos G., Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023—A review on game changing materials. Heliyon. 2022;8:e12322. doi: 10.1016/j.heliyon.2022.e12322. PubMed DOI PMC
Shao Y., Wu C., Wu T., Yuan C., Chen S., Ding T., Ye X., Hu Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018;111:1281–1292. doi: 10.1016/j.ijbiomac.2018.01.012. PubMed DOI
Salem S.S., Hashem A.H., Sallam A.-A.M., Doghish A.S., Al-Askar A.A., Arishi A.A., Shehabeldine A.M. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers. 2022;14:3352. doi: 10.3390/polym14163352. PubMed DOI PMC
Yakout S.M., Mostafa A.A. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int. J. Clin. Exp. Med. 2015;8:3538–3544. PubMed PMC
Abdel-Mohsen A.M., Hrdina R., Burgert L., Krylová G., Abdel-Rahman R., Krejcova A., Steinhart M., Benes L. Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr. Polym. 2012;89:411–422. doi: 10.1016/j.carbpol.2012.03.022. PubMed DOI
Sanchez-Cano C., Alvarez-Puebla R.A., Abendroth J.M., Beck T., Blick R., Cao Y., Caruso F., Chakraborty I., Chapman H.N., Chen C., et al. X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano. 2021;15:3754–3807. doi: 10.1021/acsnano.0c09563. PubMed DOI PMC
Salmon P., Sasov A. Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials: Techniques and Applications. Springer; Berlin/Heidelberg, Germany: 2007. Application of Nano-CT and High-Resolution Micro-CT to Study Bone Quality and Ultrastructure, Scaffold Biomaterials and Vascular Networks; pp. 323–331.
Lu B., Lu F., Zou Y., Liu J., Rong B., Li Z., Dai F., Wu D., Lan G. In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydr. Polym. 2017;173:556–565. doi: 10.1016/j.carbpol.2017.06.035. PubMed DOI
Li L.-S., Ren B., Yang X., Cai Z.-C., Zhao X.-J., Zhao M.-X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals. 2021;14:101. doi: 10.3390/ph14020101. PubMed DOI PMC
Posocco B., Dreussi E., De Santa J., Toffoli G., Abrami M., Musiani F., Grassi M., Farra R., Tonon F., Grassi G., et al. Polysaccharides for the Delivery of Antitumor Drugs. Materials. 2015;8:2569–2615. doi: 10.3390/ma8052569. DOI
Yang X., Wang B., Peng D., Nie X., Wang J., Yu C.-Y., Wei H. Hyaluronic Acid-Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Adv. NanoBiomed Res. 2022;2:2200124. doi: 10.1002/anbr.202200124. DOI
Hussain Z., Pandey M., Choudhury H., Pang C., Xian T., Kaur T., Wei Jia G., Gorain B. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics. J. Drug Deliv. Sci. Technol. 2020;57:101747. doi: 10.1016/j.jddst.2020.101747. DOI
Fahmy H.M., Aly A.A., Abou-Okeil A. A non-woven fabric wound dressing containing layer-by-layer deposited hyaluronic acid and chitosan. Int. J. Biol. Macromol. 2018;114:929–934. doi: 10.1016/j.ijbiomac.2018.03.149. PubMed DOI
Xu X., Jha A.K., Harrington D.A., Farach-Carson M.C., Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294. doi: 10.1039/c2sm06463d. PubMed DOI PMC
Nikolova M.P., Chavali M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019;4:271–292. doi: 10.1016/j.bioactmat.2019.10.005. PubMed DOI PMC
Zhu C., Fan D., Wang Y. Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering. Mater. Sci. Eng. C. 2014;34:393–401. doi: 10.1016/j.msec.2013.09.044. PubMed DOI
Seidlits S.K., Liang J., Bierman R.D., Sohrabi A., Karam J., Holley S.M., Cepeda C., Walthers C.M. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J. Biomed. Mater. Res. Part A. 2019;107:704–718. doi: 10.1002/jbm.a.36603. PubMed DOI PMC
George J., Hsu C.-C., Nguyen L.T.B., Ye H., Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol. Adv. 2020;42:107370. doi: 10.1016/j.biotechadv.2019.03.009. PubMed DOI
Feng C., Deng L., Yong Y.-Y., Wu J.-M., Qin D.-L., Yu L., Zhou X.-G., Wu A.-G. The Application of Biomaterials in Spinal Cord Injury. Int. J. Mol. Sci. 2023;24:816. doi: 10.3390/ijms24010816. PubMed DOI PMC
Trombino S., Servidio C., Curcio F., Cassano R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics. 2019;11:407. doi: 10.3390/pharmaceutics11080407. PubMed DOI PMC
Farasati Far B., Isfahani A.A., Nasiriyan E., Pourmolaei A., Mahmoudvand G., Karimi Rouzbahani A., Namiq Amin M., Naimi-Jamal M.R. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. Livers. 2023;3:161–189. doi: 10.3390/livers3020012. DOI
Catanzano O., D’Esposito V., Acierno S., Ambrosio M.R., De Caro C., Avagliano C., Russo P., Russo R., Miro A., Ungaro F., et al. Alginate–hyaluronan composite hydrogels accelerate wound healing process. Carbohydr. Polym. 2015;131:407–414. doi: 10.1016/j.carbpol.2015.05.081. PubMed DOI
Hsieh H.-Y., Lin W.-Y., Lee A.L., Li Y.-C., Chen Y.J., Chen K.-C., Young T.-H. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. PLoS ONE. 2020;15:e0227784. doi: 10.1371/journal.pone.0227784. PubMed DOI PMC
Peng X., Ding C., Zhao Y., Hao M., Liu W., Yang M., Xiao F., Zheng Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front. Bioeng. Biotechnol. 2022;10:831007. doi: 10.3389/fbioe.2022.831007. PubMed DOI PMC
Yang R., Huang J., Zhang W., Xue W., Jiang Y., Li S., Wu X., Xu H., Ren J., Chi B. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr. Polym. 2021;273:118607. doi: 10.1016/j.carbpol.2021.118607. PubMed DOI
Humaira, Raza Bukhari S.A., Shakir H.A., Khan M., Saeed S., Ahmad I., Muzammil K., Franco M., Irfan M., Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front. Chem. 2022;10:1092123. doi: 10.3389/fchem.2022.1092123. PubMed DOI PMC
Ding Y.-W., Zhang X.-W., Mi C.-H., Qi X.-Y., Zhou J., Wei D.-X. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater. Med. 2023;4:59–68. doi: 10.1016/j.smaim.2022.07.003. DOI
Garcia-Fuentes M., Meinel A.J., Hilbe M., Meinel L., Merkle H.P. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials. 2009;30:5068–5076. doi: 10.1016/j.biomaterials.2009.06.008. PubMed DOI
Khunmanee S., Jeong Y., Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 2017;8:2041731417726464. doi: 10.1177/2041731417726464. PubMed DOI PMC
Valachová K., Šoltés L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. Int. J. Mol. Sci. 2021;22:7077. doi: 10.3390/ijms22137077. PubMed DOI PMC
Xue N., Ding X., Huang R., Jiang R., Huang H., Pan X., Min W., Chen J., Duan J.-A., Liu P., et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals. 2022;15:879. doi: 10.3390/ph15070879. PubMed DOI PMC
Zheng Z., Patel M., Patel R. Hyaluronic acid-based materials for bone regeneration: A review. React. Funct. Polym. 2022;171:105151. doi: 10.1016/j.reactfunctpolym.2021.105151. DOI
Tognana E., Borrione A., De Luca C., Pavesio A. Hyalograft® C: Hyaluronan-Based Scaffolds in Tissue-Engineered Cartilage. Cells Tissues Organs. 2007;186:97–103. doi: 10.1159/000102539. PubMed DOI
Yue B. Biology of the Extracellular Matrix: An Overview. J. Glaucoma. 2014;23:S20–S23. doi: 10.1097/IJG.0000000000000108. PubMed DOI PMC
Fan Z., Zhang F., Liu T., Zuo B.Q. Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. Int. J. Biol. Macromol. 2014;65:516–523. doi: 10.1016/j.ijbiomac.2014.01.058. PubMed DOI
Yuan H., Tank M., Alsofyani A., Shah N., Talati N., LoBello J.C., Kim J.R., Oonuki Y., de la Motte C.A., Cowman M.K. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology. 2013;23:1270–1280. doi: 10.1093/glycob/cwt064. PubMed DOI PMC
Sudhakar K., Ji S.M., Kummara M.R., Han S.S. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics. 2022;14:2235. doi: 10.3390/pharmaceutics14102235. PubMed DOI PMC
Chmelař J., Brtková B., Laštovičková L., Bažantová J., Hermannová M., Kulhánek J., Mrázek J., Velebný V. Lauroyl hyaluronan films for local drug delivery: Preparation and factors influencing the release of small molecules. Int. J. Pharm. 2021;608:121111. doi: 10.1016/j.ijpharm.2021.121111. PubMed DOI
Li Y., Jiang H., Zheng W., Gong N., Chen L., Jiang X., Yang G. Correction: Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J. Mater. Chem. B. 2019;7:1962. PubMed
Castro K.C.D., Burga-Sánchez J., Nogueira Campos M.G., Mei L.H.I. Water-based synthesis of photocrosslinked hyaluronic acid/polyvinyl alcohol membranes via electrospinning. RSC Adv. 2020;10:31271–31279. doi: 10.1039/D0RA04950F. PubMed DOI PMC
Stodolak E., Rozmus K., Dzierzkowska E., Zych Ł., Rapacz-Kmita A., Gargas M., Kolaczkowska E., Cieniawska M., Książek K., Ścisłowska-Czarnecka A. The membrane with polylactide and hyaluronic fibers for skin substitute. Acta Bioeng. Biomech. 2018;20:91–99. PubMed
Abdel-Mohsen A.M., Pavliňák D., Čileková M., Lepcio P., Abdel-Rahman R.M., Jančář J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2019;139:730–739. doi: 10.1016/j.ijbiomac.2019.07.205. PubMed DOI