Long-term programme for pollution monitoring and research in the Mediterranean Sea
[1st ed.] 23 s. : tab. ; 28 cm
- Conspectus
- Veřejné zdraví a hygiena
- NML Fields
- environmentální vědy
- NML Publication type
- publikace WHO
Natural products have been used as treatment of various diseases from time immemorial and even nowadays majority of commercially available drugs on the market are derived from natural compounds. Ocean provides a home to a number of marine organisms including algae and shelter endless sources of new natural biologically active compounds. Marine algae had to cope with harsh stress conditions, which gave them outstanding variability and made them one of the major sources of compounds with unique chemical features and with exceptional biological activity. Amongst these compounds belong sulphated polysaccharides, special pigments, halogenated compounds, mycosporine-like amino acids and many other compounds beneficial to human health. Despite the tremendous amount of publications declaring impressive biological activities of algal compounds, so far only one of them was approved as antiviral drug. Nevertheless, with the advancements in technology, soon other will follow.
The aim of the present study was to investigate the presence and bioaccumulation of new flame retardants (nBFRs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DDC-CO) in the marine environment close to an Arctic community. Passive sampling of air and water and grab sampling of sediment and amphipods was used to obtain samples to study long-range transport versus local contributions for regulated and emerging flame retardants in Longyearbyen, Svalbard. BDE-47 and -99, α- and β-tetrabromoethylcyclohexane (DBE-DBCH), syn- and anti-dechlorane plus (DDC-CO) were detected in all investigated matrices and the DDC-COss at higher concentrations in the air than reported from other remote Arctic areas. Water concentrations of ΣDDC-COSs were low (3 pg/L) and comparable to recent Arctic studies. ΣnBFR was 37 pg/L in the water samples while ΣPBDE was 3 pg/L. In biota, ΣDDC-COSs dominated (218 pg/g ww) followed by ΣnBFR (95 pg/g ww) and ΣPBDEs (45 pg/g ww). When compared with other areas and their relative distribution patterns, contributions from local sources of the analysed compounds cannot be ruled out. This should be taken into account when assessing long-range transport of nBFRs and DDC-COs to the Arctic. High concentrations of PBDEs in the sediment indicate that they might originate from a small, local source, while the results for some of the more volatile compounds such as hexabromobenzene (HBBz) suggest long-range transport to be more important than local sources. We recommend that local sources of flame retardants in remote areas receive more attention in the future.
- MeSH
- Amphipoda MeSH
- Bromobenzenes analysis MeSH
- Hydrocarbons, Chlorinated analysis MeSH
- Halogenated Diphenyl Ethers analysis MeSH
- Environmental Monitoring methods MeSH
- Polycyclic Compounds analysis MeSH
- Flame Retardants analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Arctic Regions MeSH
- Svalbard MeSH
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Anti-Infective Agents * pharmacology metabolism chemistry MeSH
- Bacteria * metabolism isolation & purification chemistry MeSH
- Invertebrates * microbiology MeSH
- Symbiosis MeSH
- Aquatic Organisms * microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Streptomyces have been reported as a remarkable source for bioactive secondary metabolites with complex structural and functional diversity. In this study, 35 isolates of genus Streptomyces were purified from rhizospheric and marine soils collected from previously unexplored habitats and screened for antimicrobial activities. One of these isolates, G1, when tested in vitro, was found highly active against wide range of microbes including Gram-positive, Gram-negative bacteria, and different fungal pathogens. It was identified as mesophilic, alkaliphilic, and moderately halotolerant as it showed optimum growth at temperature 30 °C, pH 8.0 in casein-starch-peptone-yeast extract-malt extract medium supplemented with 5% NaCl. Sequence analysis of the 16S rRNA gene indicated 100% identity of this isolate to Streptomyces fimbriatus. Moreover, maximum antimicrobial activity was achieved in starch nitrate medium supplemented with 1% glycerol as carbon and 0.03% soy meal as nitrogen source. The antimicrobial compounds produced by this isolate were extracted in methanol. Bioassay-guided fractionation through thin layer chromatography of methanolic extract resulted in the separation of a most active fraction with an Rf value of 0.46. This active fraction was characterized by FTIR and LCMS analysis and found similar to streptothricin D like antibiotic with m/z 758.42.
There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.
- MeSH
- Principal Component Analysis MeSH
- Arsenic analysis MeSH
- Time Factors MeSH
- Water Pollutants, Chemical analysis MeSH
- Diffusion MeSH
- Geologic Sediments analysis chemistry MeSH
- Mining MeSH
- Isotopes analysis chemistry MeSH
- Oxygen analysis MeSH
- Environmental Monitoring MeSH
- Oxidation-Reduction MeSH
- Water Movements MeSH
- Sulfates analysis MeSH
- Sulfides analysis MeSH
- Carbonates analysis MeSH
- Water Supply analysis MeSH
- Geography MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Mexico MeSH
The present study has undertaken the isolation of marine yeasts from mangrove sediment samples and their ability to produce alkaline protease enzymes. A total of 14 yeast isolates were recovered on yeast-malt agar (YMA) and yeast extract peptone dextrose (YEPD) agar medium. After screening for proteolytic activity on skim milk agar, marine yeast isolate, AKB-1 exhibited a hydrolysis zone of 18 mm. Optimal conditions for the enzyme production from yeast isolate AKB-1 were at 30 °C, pH 8, fructose as carbon source, potassium nitrate as nitrogen source, and 25% saline concentration. Under the optimal conditions, the protease enzyme activity of the isolate AKB-1 was observed to be 978 IU/mL. The structural and functional analysis was carried out through FTIR and HPLC analysis for the extracted protease enzyme. Furthermore, the enzyme produced was partially purified by solvent extraction using ethyl acetate and ammonium sulfate precipitation (3.4-fold) followed by dialysis (56.8-fold). The molecular weight of the purified enzyme was observed to be around 60 kDa using SDS-PAGE. The extracted protein showed good antibacterial activity against six different clinical bacterial pathogens and the highest against Bacillus cereus (16 ± 0.5 mm). The extracted protease enzyme was revealed to remove blood stains from cloth within 20 min of application similar to the commercial detergent. The marine yeast isolate was further identified as Candida orthopsilosis AKB-1 (Accession number KY348766) through 18S rRNA sequencing, and a phylogenetic tree was generated.
- MeSH
- Anti-Bacterial Agents pharmacology metabolism chemistry isolation & purification MeSH
- Bacillus cereus drug effects MeSH
- Bacterial Proteins * chemistry pharmacology metabolism isolation & purification MeSH
- Candida * enzymology isolation & purification genetics classification MeSH
- Endopeptidases * chemistry metabolism isolation & purification pharmacology MeSH
- Phylogeny MeSH
- Geologic Sediments microbiology MeSH
- Hydrogen-Ion Concentration MeSH
- Culture Media chemistry MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Weight MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
Tuberculosis is a dreaded disease, which causes innumerable death worldwide. The emergence of drug resistance strains makes the situation devastating. Therefore, for better management of public health, it is mandatory to search for new anti-mycobacterial agents. In this context, the current study investigated two edible marine algae, Ulva lactuca and Ulva intestinalis, for the probable source of new anti-mycobacterial agents. To test the anti-mycobacterial activity, alcoholic extracts of these two algae were spotted on the Mycobacterium smegmatis lawn. Upon incubation, clear zone was observed at the spots. It indicated that these two extracts have anti-mycobacterial activity. In addition, their anti-biofilm property was also tested. It was found that both the extracts inhibit the mycobacterial biofilm development as well as they can disperse the preformed mycobacterial biofilm. Since these two are capable of dispersing preformed mycobacterial biofilm, it is possible that in the presence of either of these two extracts, isoniazid and rifampicin can kill biofilm encapsulated mycobacterium in combinatorial therapy. Consistent with the hypothesis, rifampicin and isoniazid killed mycobacteria that were present in biofilm. Thus, these two extracts augment the activity of rifampicin and isoniazid upon biofilm dispersal. Moreover, treatment of different cell lines with these two extracts exhibited no or little cytotoxic effects. Thus, these two agents have the potential to be good therapeutic agents against mycobacterial diseases.
- MeSH
- Anti-Bacterial Agents isolation & purification pharmacology MeSH
- Biofilms drug effects MeSH
- Cell Line MeSH
- Isoniazid pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Seaweed chemistry MeSH
- Mycobacterium smegmatis drug effects MeSH
- Rifampin pharmacology MeSH
- Plant Extracts isolation & purification pharmacology MeSH
- Drug Synergism MeSH
- Ulva chemistry MeSH
- Cell Survival MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Haloalkane dehalogenases degrade halogenated compounds to corresponding alcohols by a hydrolytic mechanism. These enzymes are being intensively investigated as model systems in experimental and in silico studies of enzyme mechanism and evolution, but also hold importance as useful biocatalysts for a number of biotechnological applications. Haloalkane dehalogenases originate from various organisms including bacteria (degraders, symbionts, or pathogens), eukaryotes, and archaea. Several members of this enzyme family have been found in marine organisms. The marine environment represents a good source of enzymes with novel properties, because of its diverse living conditions. A number of novel dehalogenases isolated from marine environments show interesting characteristics such as high activity, unusually broad substrate specificity, stability, or selectivity. In this chapter, the overview of haloalkane dehalogenases from marine organisms is presented and their characteristics are summarized together with an overview of the methods for their identification and biochemical characterization.
- MeSH
- Aldehydes metabolism MeSH
- Alkanes metabolism MeSH
- Biocatalysis MeSH
- Biotechnology methods MeSH
- Enzyme Assays methods MeSH
- Halogens metabolism MeSH
- Hydrolases chemistry isolation & purification metabolism MeSH
- Substrate Specificity MeSH
- Green Chemistry Technology methods MeSH
- Aquatic Organisms metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Background. Fatty acids are substantial components of lipids and cell membranes in the form of phospholipids. This review consists of two parts. The present part aims at describing fatty acid classification, dietary sources and biological functions. The second part will focus on fatty acid physiological roles and applications in human health and disease. Results. In humans, not all fatty acids can be produced endogenously due to the absence of certain desaturases. Thus, specific fatty acids termed essential (linoleic, alpha-linolenic) need to be taken from the diet. Other fatty acids whose synthesis depends on essential fatty acid intake include eicosapentaenoic acid and docosahexaenoic acid, found in oily fish. Dietary sources of saturated fatty acids are animal products (butter, lard) and tropical plant oils (coconut, palm), whereas sources of unsaturated fatty acids are vegetable oils (such as olive, sunflower, and soybean oils) and marine products (algae and fish oils). Saturated fatty acids have been related to adverse health effects, whereas unsaturated fatty acids, especially monounsaturated and n-3 polyunsaturated, are thought to be protective. In addition, trans fatty acids have been shown to have negative effects on health, whereas conjugated fatty acids might be beneficial. Lastly, fatty acids are the main components of lipid classes (triacylglycerols, phospholipids, cholesteryl esters, non-esterified fatty acids). Conclusion. Fatty acids are important biocompounds which take part in complex metabolic pathways, thus having major biological roles. They are obtained from various dietary sources which determine the type of fat consumed and consequently health outcome.
- MeSH
- Dietary Fats MeSH
- Humans MeSH
- Fatty Acids physiology chemistry classification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH