Evaluation of the Quality of Selected White and Red Wines Produced from Moravia Region of Czech Republic Using Physicochemical Analysis, FTIR Infrared Spectroscopy and Chemometric Techniques

. 2023 Aug 29 ; 28 (17) : . [epub] 20230829

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37687155

Grantová podpora
CZ.02.1.01/0.0/0.0/16_017/0002334 CZ.02.1.01/0.0/0.0/16_017/0002334 Research Infrastructure for Young Scientists
Operational Program Research, Development and Education Operational Program Research, Development and Education

The FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores yielded clear separation between the four classes of samples and showed very good discrimination between the wine samples, with a 91.7% overall classification rate for the samples. The conducted FTIR spectroscopy studies coupled with chemometrics allowed for the swift analysis of multiple wine components with minimal sample preparation. These methods can be used in research to improve specific properties of these wines, which will undoubtedly enhance the quality of the final wine samples obtained.

Zobrazit více v PubMed

Manzocco L., Maltini E., Lerici C.R. Changes of some thermal and physical properties in model systems simulating an alcoholic fermentation. J. Food Process Pres. 1998;22:1–12. doi: 10.1111/j.1745-4549.1998.tb00800.x. DOI

Michlovský M. Lexicon of Chemical Composition of Wine. 1st ed. Garamon s.r.o.; Hradec Králové, Czech Republic: 2014. p. 262.

Ronsheim J.R. Vintage: The Story of Wine—Johnson, H. Antioch. Rev. 1990;48:111–112. doi: 10.2307/4612162. DOI

Boulet J.C., Trarieux C., Souquet J.M., Ducasse M.A., Caille S., Samson A., Williams P., Doco T., Cheynier V. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chem. 2016;190:357–363. doi: 10.1016/j.foodchem.2015.05.062. PubMed DOI

Jones-Moore H.R., Jelley R.E., Marangon M., Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci. Technol. 2021;111:731–740. doi: 10.1016/j.tifs.2021.03.019. DOI

Johnson C. The Wine Wheel Goes Round and Round. [(accessed on 14 December 2014)]. Available online: http://cookingwithsin.com/2010/07/26/the-wine-wheel-goes-round-round/

Baca-Bocanegra B., Nogales-Bueno J., Gorey B., Heredia F.J., Byrne H.J., Hernandez-Hierro J.M. On the use of vibrational spectroscopy and scanning electron microscopy to study phenolic extractability of cooperage byproducts in wine. Eur. Food Res. Technol. 2019;245:2209–2220. doi: 10.1007/s00217-019-03329-6. DOI

Baca-Bocanegra B., Martinez-Lapuente L., Nogales-Bueno J., Hernandez-Hierro J.M., Ferrer-Gallego R. Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohyd. Polym. 2022;287:119365. doi: 10.1016/j.carbpol.2022.119365. PubMed DOI

Banc R., Loghin F., Miere D., Fetea F., Socaciu C. Romanian Wines Quality and Authenticity Using FT-MIR Spectroscopy Coupled with Multivariate Data Analysis. Not. Bot. Horti. Agrobo. 2014;42:556–564. doi: 10.15835/nbha4229674. DOI

Lucarini M., Durazzo A., del Pulgar J.S., Gabrielli P., Lombardi-Boccia G. Determination of fatty acid content in meat and meat products: The FTIR-ATR approach. Food Chem. 2018;267:223–230. doi: 10.1016/j.foodchem.2017.11.042. PubMed DOI

Han Y.H., Wang X.L., Liu Y., Han L.J., Yang Z.L., Liu X. A novel FTIR discrimination based on genomic DNA for species-specific analysis of meat and bone meal. Food Chem. 2019;294:526–532. doi: 10.1016/j.foodchem.2019.05.088. PubMed DOI

Cozzolino D., Cynkar W., Shah N., Smith P. Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine. Food Res. Int. 2011;44:181–186. doi: 10.1016/j.foodres.2010.10.043. DOI

Mato I., Suarez-Luque S., Huidobro J.F. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 2005;38:1175–1188. doi: 10.1016/j.foodres.2005.04.007. DOI

Schneider R., Charrier F., Moutounet M., Baumes R. Rapid analysis of grape aroma glycoconjugates using Fourier-transform infrared spectrometry and chemometric techniques. Anal. Chim. Acta. 2004;513:91–96. doi: 10.1016/j.aca.2003.11.082. DOI

Silva S.D., Feliciano R.P., Boas L.V., Bronze M.R. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014;150:489–493. doi: 10.1016/j.foodchem.2013.11.028. PubMed DOI

Gouvinhas I., de Almeida J.M.M.M., Carvalho T., Machado N., Barros A.I.R.N.A. Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 2015;174:226–232. doi: 10.1016/j.foodchem.2014.11.037. PubMed DOI

Dong D., Zheng W., Jiao L., Lang Y., Zhao X. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics. Food Chem. 2016;194:95–100. doi: 10.1016/j.foodchem.2015.08.005. PubMed DOI

Bendini A., Cerretani L., Di Virgilio F., Belloni P., Bonoli-Carbognin M., Lercker G. Preliminary evaluation of the application of the ftir spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007;30:424–437. doi: 10.1111/j.1745-4557.2007.00132.x. DOI

Matwijczuk A., Budziak-Wieczorek I., Czernel G., Karcz D., Baranska A., Jedlinska A., Samborska K. Classification of Honey Powder Composition by FTIR Spectroscopy Coupled with Chemometric Analysis. Molecules. 2022;27:3800. doi: 10.3390/molecules27123800. PubMed DOI PMC

Kachel M., Stryjecka M., Slusarczyk L., Matwijczuk A., Budziak-Wieczorek I., Gladyszewski G. Impact of Metal Nanoparticles on the Phytochemical and Antioxidative Properties of Rapeseed Oil. Materials. 2023;16:694. doi: 10.3390/ma16020694. PubMed DOI PMC

Jones G.V., White M.A., Cooper O.R., Storchmann K. Climate change and global wine quality. Clim. Chang. 2005;73:319–343. doi: 10.1007/s10584-005-4704-2. DOI

Jackson R.S. Wine Science: Principles and Applications. 3rd ed. Academic Press; London, UK: 2008. p. 776.

Carrau F., Boido E., Dellacassa E. Yeast Diversity and Flavor Compounds. In: Mérillon J.M., Ramawat K., editors. Fungal Metabolites. Springer; Cham, Switzerland: 2017. (Reference Series in Phytochemistry).

Bartowsky E.J., Xia D., Gibson R.L., Fleet G.H., Henschke P.A. Spoilage of bottled red wine by acetic acid bacteria. Lett. Appl. Microbiol. 2003;36:307–314. doi: 10.1046/j.1472-765X.2003.01314.x. PubMed DOI

European Commission Commission Regulation (EEC) No 2676/90 of 17 September 1990 determining Community methods for the analysis of wines. Offic. J. EU. 1990;L 272:192.

Volschenk H., van Vuuren H.J., Viljoen-Bloom M. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. S. Afr. J. Enol. Vitic. 2006;27:123–136. doi: 10.21548/27-2-1613. DOI

Sumby K.M., Grbin P.R., Jiranek V. Implications of new research and technologies for malolactic fermentation in wine. Appl. Microbiol. Biot. 2014;98:8111–8132. doi: 10.1007/s00253-014-5976-0. PubMed DOI

Vicente J., Navascues E., Calderon F., Santos A., Marquina D., Benito S. An Integrative View of the Role of Lachancea thermotolerans in Wine Technology. Foods. 2021;10:2878. doi: 10.3390/foods10112878. PubMed DOI PMC

Henick-Kling T., Edinger W., Daniel P., Monk P. Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 1998;84:865–876. doi: 10.1046/j.1365-2672.1998.00423.x. DOI

Redzepovic S., Orlic S., Majdak A., Kozina B., Volschenk H., Viljoen-Bloom M. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int. J. Food Microbiol. 2003;83:49–61. doi: 10.1016/S0168-1605(02)00320-3. PubMed DOI

Robinson J., editor. The Oxford Companion to Wine. 2nd ed. Oxford University Press; Oxford, UK: 1999.

Hu X.Z., Liu S.Q., Li X.H., Wang C.X., Ni X.L., Liu X., Wang Y., Liu Y., Xu C.H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep. 2019;9:8256. doi: 10.1038/s41598-019-44521-8. PubMed DOI PMC

Basalekou M., Pappas C., Tarantilis P.A., Kallithraka S. Wine Authenticity and Traceability with the Use of FT-IR. Beverages. 2020;6:30. doi: 10.3390/beverages6020030. DOI

Moreira J.L., Santos L. Analysis of organic acids in wines by Fourier-transform infrared spectroscopy. Anal. Bioanal. Chem. 2005;382:421–425. doi: 10.1007/s00216-005-3062-2. PubMed DOI

OIV . Compendium of International Methods of Wine and Must Analysis. International Organisation of Vine and Wine; Paris, France: 2011.

Rebelein H. Vereinfachtes Verfahren zur Bestimmung des Glycerins und Butylenglykols in Wein. Z. Lebensm. Unters. Forsch. 1957;105:296–311. doi: 10.1007/BF01047440. DOI

Eroglu A., Dogan M., Toker O.S., Yilmaz M.T. Classification of Kashar Cheeses Based on Their Chemical, Color and Instrumental Textural Characteristics Using Principal Component and Hierarchical Cluster Analysis. Int. J. Food Prop. 2015;18:909–921. doi: 10.1080/10942912.2013.864673. DOI

Granato D., Santos J.S., Escher G.B., Ferreira B.L., Maggio R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018;72:83–90. doi: 10.1016/j.tifs.2017.12.006. DOI

Zhao Y.Q., Zeng Y.Y., Li X.S., Yuan K.L., Li Y., Tian L.M., Sun J.X., Bai W.B. Modeling and application of sensory evaluation of blueberry wine based on principal component analysis. Curr. Res. Food Sci. 2023;6:100403. doi: 10.1016/j.crfs.2022.11.022. PubMed DOI PMC

Budziak I., Arczewska M., Kaminski D.M. Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules. 2019;24:4245. doi: 10.3390/molecules24234245. PubMed DOI PMC

Ami D., Natalello A., Mereghetti P., Neri T., Zanoni M., Monti M., Doglia S.M., Redi C.A. FT-IR spectroscopy supported by PCA-LDA analysis for the study of embryonic stem cell differentiation. Spectrosc. Int. J. 2010;24:89–97. doi: 10.1155/2010/479191. DOI

Ma L.L., Varveri A., Jing R.X., Erkens S. Chemical characterisation of bitumen type and ageing state based on FTIR spectroscopy and discriminant analysis integrated with variable selection methods. Road Mater. Pavement. 2023;24:506–520. doi: 10.1080/14680629.2023.2181008. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...