Evaluation of the Quality of Selected White and Red Wines Produced from Moravia Region of Czech Republic Using Physicochemical Analysis, FTIR Infrared Spectroscopy and Chemometric Techniques
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_017/0002334
CZ.02.1.01/0.0/0.0/16_017/0002334 Research Infrastructure for Young Scientists
Operational Program Research, Development and Education
Operational Program Research, Development and Education
PubMed
37687155
PubMed Central
PMC10489813
DOI
10.3390/molecules28176326
PII: molecules28176326
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR spectroscopy, chemometric analysis, grape varieties, principal component analysis, wine samples,
- MeSH
- chemometrika MeSH
- spektrofotometrie infračervená MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- víno * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores yielded clear separation between the four classes of samples and showed very good discrimination between the wine samples, with a 91.7% overall classification rate for the samples. The conducted FTIR spectroscopy studies coupled with chemometrics allowed for the swift analysis of multiple wine components with minimal sample preparation. These methods can be used in research to improve specific properties of these wines, which will undoubtedly enhance the quality of the final wine samples obtained.
Department of Biochemistry and Molecular Biology Medical University of Lublin 20 093 Lublin Poland
Department of Biophysics University of Life Sciences in Lublin Akademicka 13 20 950 Lublin Poland
Zobrazit více v PubMed
Manzocco L., Maltini E., Lerici C.R. Changes of some thermal and physical properties in model systems simulating an alcoholic fermentation. J. Food Process Pres. 1998;22:1–12. doi: 10.1111/j.1745-4549.1998.tb00800.x. DOI
Michlovský M. Lexicon of Chemical Composition of Wine. 1st ed. Garamon s.r.o.; Hradec Králové, Czech Republic: 2014. p. 262.
Ronsheim J.R. Vintage: The Story of Wine—Johnson, H. Antioch. Rev. 1990;48:111–112. doi: 10.2307/4612162. DOI
Boulet J.C., Trarieux C., Souquet J.M., Ducasse M.A., Caille S., Samson A., Williams P., Doco T., Cheynier V. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chem. 2016;190:357–363. doi: 10.1016/j.foodchem.2015.05.062. PubMed DOI
Jones-Moore H.R., Jelley R.E., Marangon M., Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci. Technol. 2021;111:731–740. doi: 10.1016/j.tifs.2021.03.019. DOI
Johnson C. The Wine Wheel Goes Round and Round. [(accessed on 14 December 2014)]. Available online: http://cookingwithsin.com/2010/07/26/the-wine-wheel-goes-round-round/
Baca-Bocanegra B., Nogales-Bueno J., Gorey B., Heredia F.J., Byrne H.J., Hernandez-Hierro J.M. On the use of vibrational spectroscopy and scanning electron microscopy to study phenolic extractability of cooperage byproducts in wine. Eur. Food Res. Technol. 2019;245:2209–2220. doi: 10.1007/s00217-019-03329-6. DOI
Baca-Bocanegra B., Martinez-Lapuente L., Nogales-Bueno J., Hernandez-Hierro J.M., Ferrer-Gallego R. Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohyd. Polym. 2022;287:119365. doi: 10.1016/j.carbpol.2022.119365. PubMed DOI
Banc R., Loghin F., Miere D., Fetea F., Socaciu C. Romanian Wines Quality and Authenticity Using FT-MIR Spectroscopy Coupled with Multivariate Data Analysis. Not. Bot. Horti. Agrobo. 2014;42:556–564. doi: 10.15835/nbha4229674. DOI
Lucarini M., Durazzo A., del Pulgar J.S., Gabrielli P., Lombardi-Boccia G. Determination of fatty acid content in meat and meat products: The FTIR-ATR approach. Food Chem. 2018;267:223–230. doi: 10.1016/j.foodchem.2017.11.042. PubMed DOI
Han Y.H., Wang X.L., Liu Y., Han L.J., Yang Z.L., Liu X. A novel FTIR discrimination based on genomic DNA for species-specific analysis of meat and bone meal. Food Chem. 2019;294:526–532. doi: 10.1016/j.foodchem.2019.05.088. PubMed DOI
Cozzolino D., Cynkar W., Shah N., Smith P. Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine. Food Res. Int. 2011;44:181–186. doi: 10.1016/j.foodres.2010.10.043. DOI
Mato I., Suarez-Luque S., Huidobro J.F. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 2005;38:1175–1188. doi: 10.1016/j.foodres.2005.04.007. DOI
Schneider R., Charrier F., Moutounet M., Baumes R. Rapid analysis of grape aroma glycoconjugates using Fourier-transform infrared spectrometry and chemometric techniques. Anal. Chim. Acta. 2004;513:91–96. doi: 10.1016/j.aca.2003.11.082. DOI
Silva S.D., Feliciano R.P., Boas L.V., Bronze M.R. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014;150:489–493. doi: 10.1016/j.foodchem.2013.11.028. PubMed DOI
Gouvinhas I., de Almeida J.M.M.M., Carvalho T., Machado N., Barros A.I.R.N.A. Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 2015;174:226–232. doi: 10.1016/j.foodchem.2014.11.037. PubMed DOI
Dong D., Zheng W., Jiao L., Lang Y., Zhao X. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics. Food Chem. 2016;194:95–100. doi: 10.1016/j.foodchem.2015.08.005. PubMed DOI
Bendini A., Cerretani L., Di Virgilio F., Belloni P., Bonoli-Carbognin M., Lercker G. Preliminary evaluation of the application of the ftir spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007;30:424–437. doi: 10.1111/j.1745-4557.2007.00132.x. DOI
Matwijczuk A., Budziak-Wieczorek I., Czernel G., Karcz D., Baranska A., Jedlinska A., Samborska K. Classification of Honey Powder Composition by FTIR Spectroscopy Coupled with Chemometric Analysis. Molecules. 2022;27:3800. doi: 10.3390/molecules27123800. PubMed DOI PMC
Kachel M., Stryjecka M., Slusarczyk L., Matwijczuk A., Budziak-Wieczorek I., Gladyszewski G. Impact of Metal Nanoparticles on the Phytochemical and Antioxidative Properties of Rapeseed Oil. Materials. 2023;16:694. doi: 10.3390/ma16020694. PubMed DOI PMC
Jones G.V., White M.A., Cooper O.R., Storchmann K. Climate change and global wine quality. Clim. Chang. 2005;73:319–343. doi: 10.1007/s10584-005-4704-2. DOI
Jackson R.S. Wine Science: Principles and Applications. 3rd ed. Academic Press; London, UK: 2008. p. 776.
Carrau F., Boido E., Dellacassa E. Yeast Diversity and Flavor Compounds. In: Mérillon J.M., Ramawat K., editors. Fungal Metabolites. Springer; Cham, Switzerland: 2017. (Reference Series in Phytochemistry).
Bartowsky E.J., Xia D., Gibson R.L., Fleet G.H., Henschke P.A. Spoilage of bottled red wine by acetic acid bacteria. Lett. Appl. Microbiol. 2003;36:307–314. doi: 10.1046/j.1472-765X.2003.01314.x. PubMed DOI
European Commission Commission Regulation (EEC) No 2676/90 of 17 September 1990 determining Community methods for the analysis of wines. Offic. J. EU. 1990;L 272:192.
Volschenk H., van Vuuren H.J., Viljoen-Bloom M. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. S. Afr. J. Enol. Vitic. 2006;27:123–136. doi: 10.21548/27-2-1613. DOI
Sumby K.M., Grbin P.R., Jiranek V. Implications of new research and technologies for malolactic fermentation in wine. Appl. Microbiol. Biot. 2014;98:8111–8132. doi: 10.1007/s00253-014-5976-0. PubMed DOI
Vicente J., Navascues E., Calderon F., Santos A., Marquina D., Benito S. An Integrative View of the Role of Lachancea thermotolerans in Wine Technology. Foods. 2021;10:2878. doi: 10.3390/foods10112878. PubMed DOI PMC
Henick-Kling T., Edinger W., Daniel P., Monk P. Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 1998;84:865–876. doi: 10.1046/j.1365-2672.1998.00423.x. DOI
Redzepovic S., Orlic S., Majdak A., Kozina B., Volschenk H., Viljoen-Bloom M. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int. J. Food Microbiol. 2003;83:49–61. doi: 10.1016/S0168-1605(02)00320-3. PubMed DOI
Robinson J., editor. The Oxford Companion to Wine. 2nd ed. Oxford University Press; Oxford, UK: 1999.
Hu X.Z., Liu S.Q., Li X.H., Wang C.X., Ni X.L., Liu X., Wang Y., Liu Y., Xu C.H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep. 2019;9:8256. doi: 10.1038/s41598-019-44521-8. PubMed DOI PMC
Basalekou M., Pappas C., Tarantilis P.A., Kallithraka S. Wine Authenticity and Traceability with the Use of FT-IR. Beverages. 2020;6:30. doi: 10.3390/beverages6020030. DOI
Moreira J.L., Santos L. Analysis of organic acids in wines by Fourier-transform infrared spectroscopy. Anal. Bioanal. Chem. 2005;382:421–425. doi: 10.1007/s00216-005-3062-2. PubMed DOI
OIV . Compendium of International Methods of Wine and Must Analysis. International Organisation of Vine and Wine; Paris, France: 2011.
Rebelein H. Vereinfachtes Verfahren zur Bestimmung des Glycerins und Butylenglykols in Wein. Z. Lebensm. Unters. Forsch. 1957;105:296–311. doi: 10.1007/BF01047440. DOI
Eroglu A., Dogan M., Toker O.S., Yilmaz M.T. Classification of Kashar Cheeses Based on Their Chemical, Color and Instrumental Textural Characteristics Using Principal Component and Hierarchical Cluster Analysis. Int. J. Food Prop. 2015;18:909–921. doi: 10.1080/10942912.2013.864673. DOI
Granato D., Santos J.S., Escher G.B., Ferreira B.L., Maggio R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018;72:83–90. doi: 10.1016/j.tifs.2017.12.006. DOI
Zhao Y.Q., Zeng Y.Y., Li X.S., Yuan K.L., Li Y., Tian L.M., Sun J.X., Bai W.B. Modeling and application of sensory evaluation of blueberry wine based on principal component analysis. Curr. Res. Food Sci. 2023;6:100403. doi: 10.1016/j.crfs.2022.11.022. PubMed DOI PMC
Budziak I., Arczewska M., Kaminski D.M. Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules. 2019;24:4245. doi: 10.3390/molecules24234245. PubMed DOI PMC
Ami D., Natalello A., Mereghetti P., Neri T., Zanoni M., Monti M., Doglia S.M., Redi C.A. FT-IR spectroscopy supported by PCA-LDA analysis for the study of embryonic stem cell differentiation. Spectrosc. Int. J. 2010;24:89–97. doi: 10.1155/2010/479191. DOI
Ma L.L., Varveri A., Jing R.X., Erkens S. Chemical characterisation of bitumen type and ageing state based on FTIR spectroscopy and discriminant analysis integrated with variable selection methods. Road Mater. Pavement. 2023;24:506–520. doi: 10.1080/14680629.2023.2181008. DOI