• This record comes from PubMed

Impact of traffic intensity and vehicular emissions on heavy metal content in vineyard soils, grapes, and wine: a comparative study of two vineyards in South Moravia (Czech Republic)

. 2025 May 20 ; 47 (6) : 216. [epub] 20250520

Language English Country Netherlands Media electronic

Document type Journal Article, Comparative Study

Links

PubMed 40392423
PubMed Central PMC12092489
DOI 10.1007/s10653-025-02530-9
PII: 10.1007/s10653-025-02530-9
Knihovny.cz E-resources

The primary objective of this study is to evaluate the impact of vehicular traffic emissions on the contamination of wine production by heavy metals. For this purpose, selected heavy elements (As, Ba, Cd, Cr, Cu, Ni, Pb, and Zn) were determined in the samples of vineyard soils, grapes, final wines, and samples from the various phases of the winemaking process of two South Moravian (Czech Republic) vineyards with different intensity of traffic. After the visualisation of the data, the interpretation of the results and risk assessment calculations were performed. The results obtained indicate that contamination of grapes with aerosol is the most important and soil contamination is of minor relevance. The application of fungicides was the primary source of copper and zinc in soils and grapes. During the winemaking process, there is a significant decrease in the content of heavy elements originating from emissions from vehicular traffic. However, winemaking technology was found to be the most important source of heavy elements in the final wine. The health risk assessment indicates a low risk of consumption of both grapes and wine from both the examined and the reference wineries.

See more in PubMed

Adamiec, E., Jarosz-Krzemińska, E., & Wieszała, R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental Monitoring and Assessment,188, 369. 10.1007/s10661-016-5377-1 PubMed PMC

Angelova, V. R., Ivanov, A. S., & Braikov, D. M. (1999a). Heavy metals (Pb, Cu, Zn and Cd) in the system soil – grapevine – grape. Journal of the Science of Food and Agriculture,79, 713–721.

Angelova, V., Ivanov, A., Braikov, D., & Ivanov, K. (1999b). Heavy metal (Pb, Cu, Zn and Cd) content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region. Journal International des Sciences De La Vigne Et Du Vin,33, 119–131. 10.20870/oeno-one.1999.33.3.1022

Angon, P. B., Islam, S., Shreejana, K. C., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon,10, e28357. 10.1016/j.heliyon.2024.e28357 PubMed PMC

Ash, C., Vacek, O., Jakšík, O., Tejnecký, V., & Drábek, O. (2012). Elevated soil copper content in a Bohemian vineyard as a result of fungicide application. Soil & Water Research,7, 151–158. 10.17221/41/2012-SWR

Bălc, R., Tămaş, T., Popiţa, G., Vasile, G., Bratu, M., Gligor, D., & Moldovan, C. (2018). Assessment of chemical elements in soil, grapes and wine from two representative vineyards in Romania. Carpathian Journal of Earth and Environmental Sciences,13, 435–446. 10.26471/cjees/2018/013/037

Budziak-Wieczorek, I., Mašán, V., Rząd, K., Gładyszewska, B., Karcz, D., Burg, P., Čížková, A., Gagoś, M., & Matwijczuk, A. (2023). Evaluation of the quality of selected white and red wines produced from Moravia region of Czech Republic using physicochemical analysis, FTIR infrared spectroscopy and chemometric techniques. Molecules,28, 6326. 10.3390/molecules28176326 PubMed PMC

Castiñeira, M., Brandt, R., Jakubowski, N., & Andersson, J. T. (2004). Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma−mass spectrometry. Journal of Agricultural and Food Chemistry,52, 2953–2961. 10.1021/jf035119g PubMed

Chládková, H., Tomšík, P., & Gurská, S. (2009). The development of main factors of the wine demand. Agricultural Economics Czech,55, 321–326. 10.17221/58/2009-AGRICECON

Chopin, E. I. B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M. J., Delannoy, E., Cancès, B., & Laurain, M. (2008). Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environmental Pollution,156, 1092–1098. 10.1016/j.envpol.2008.04.015 PubMed

De Silva, S., Ball, A. S., Indrapala, D. V., & Reichman, S. M. (2021). Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere,263, 128135. 10.1016/j.chemosphere.2020.128135 PubMed

Donici, A., Bunea, C. I., Călugăr, A., Harsan, E., & Bora, F. D. (2019). Investigation of the copper content in vineyard soil, grape, must and wine in the main vineyards of Romania: a preliminary study. Bulletin UASVM Horticulture,76, 31–46. 10.15835/buasvmcn-hort:2018.0017

dos Santos, C. E. I., Debastiani, R., Souza, V. S., Peretti, D. E., Jobim, P. F. C., Yoneama, M. L., Amaral, L., & Dias, J. F. (2019). The influence of the winemaking process on the elemental composition of the Marselan red wine. Journal of the Science of Food and Agriculture,99, 4642–4650. 10.1002/jsfa.9704 PubMed

Dumitriu, G.-D., Teodosiu, C., Morosanu, I., Plavan, O., Gabur, I., & Cotea, V. V. (2021). Heavy metals assessment in the major stages of winemaking: Chemometric analysis and impacts on human health and environment. Journal of Food Composition and Analysis,100, 103935. 10.1016/j.jfca.2021.103935

EFSA. (2009). Scientific opinion on arsenic in food. EFSA Journal,7, 1351. 10.2903/j.efsa.2009.1351

EFSA. (2010). Scientific opinion on lead in food. EFSA Journal,8, 1570. 10.2903/j.efsa.2010.1570

EFSA. (2014a). Scientific opinion on dietary reference values for zinc. EFSA Journal,12, 3844. 10.2903/j.efsa.2014.3844

EFSA. (2014b). Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal,12, 3595. 10.2903/j.efsa.2014.3595

EFSA. (2020). Update of the risk assessment of nickel in food and drinking water. EFSA Journal,18, 6268. 10.2903/j.efsa.2020.6268 PubMed PMC

EFSA. (2022). Public consultation on the draft scientific opinion on the reevaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA Supporting Publication EN-7743. 10.2903/sp.efsa.2023.EN-7743 PubMed PMC

Gupta, V. (2020). Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. In V. Shukla & N. Kumar (Eds.), Environmental concerns and sustainable development. Singapore: Springer.

Holmes, D. T., & Buhr, K. A. (2007). Error propagation in calculated ratios. Clinical Biochemistry,40, 728–734. 10.1016/j.clinbiochem.2006.12.014 PubMed

Hopfer, H., Nelson, J., Mitchell, A. E., Heymann, H., & Ebeler, S. E. (2013). Profiling the trace metal composition of wine as a function of storage temperature and packaging type. Journal of Analytical Atomic Spectrometry,28, 1288–1291. 10.1039/C3JA50098E

Hu, J., Wang, Z., Williams, G. D. Z., Dwyer, G. S., Gatiboni, L., Duckworth, O. W., & Vengosh, A. (2024). Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer. Science of the Total Environment,907, 167863. 10.1016/j.scitotenv.2023.167863 PubMed

Iwegbue, Ch. M. A. (2014). A survey of metal contents in some popular brands of wines in the Nigerian market: Estimation of dietary intake and target hazard quotients. Journal of Wine Research,25, 144–157. 10.1080/09571264.2014.917616

Johansson, Ch., Norman, M., & Burman, L. (2000). Road traffic emission factors for heavy metals. Atmospheric Environment,43, 4681–4688. 10.1016/j.atmosenv.2008.10.024

Ko, B.-G., Vogeler, I., Bolan, N. S., Clothier, B., Green, S., & Kennedy, J. (2007). Mobility of copper, chromium and arsenic from treated timber into grapevines. Science of the Total Environment,388, 35–42. 10.1016/j.scitotenv.2007.07.041 PubMed

Komárek, M., Čadková, E., Chrastný, V., Bordas, F., & Bollinger, J.-C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International,36, 138–151. 10.1016/j.envint.2009.10.005 PubMed

Komárek, M., Száková, J., Rohošková, M., Javorská, H., Chrastný, V., & Balík, J. (2008). Copper contamination of vineyard soils from small wine producers: A case study from the Czech Republic. Geoderma,147, 16–22. 10.1016/j.geoderma.2008.07.001

Kowalczyk, E., Givelet, L., Amlund, H., Sloth, J. J., & Hansen, M. (2022). Risk assessment of rare earth elements, antimony, barium, boron, lithium, tellurium, thallium and vanadium in teas. EFSA Journal,20, e200410. 10.2903/j.efsa.2022.e200410 PubMed PMC

Láchová, J. & Daňková, Š. (2010). Evropské výběrové šetření o zdravotním stavu v ČR - EHIS CR. Aktuální informace Ústavu zdravotnických informací a statistiky České republiky, 70, 1–11. https://www.uzis.cz/sites/default/files/knihovna/70_10.pdf

Li, X., Dong, S., & Su, X. (2018). Copper and other heavy metals in grapes: A pilot study tracing influential factors and evaluating potential risks in China. Scientific Reports,8, 17407. 10.1038/s41598-018-34767-z PubMed PMC

Liu, D., Wang, J., Yu, H., Gao, H., & Xu, W. (2021). Evaluating ecological risks and tracking potential factors influencing heavy metals in sediments in an urban river. Environmental Sciences Europe,33, 42. 10.1186/s12302-021-00487-x

Medina, B., Augagneur, S., Barbaste, M., Grousset, F. E., & Buat-Menard, P. (2000). Influence of atmospheric pollution on the lead content of wines. Food Additives & Contaminants,17, 435–445. 10.1080/02652030050034019 PubMed

Milićević, T., Aničić Urošević, M., Relić, D., Vuković, G., Škrivanj, S., & Popović, A. (2018). Bioavailability of potentially toxic elements in soil–grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment. Science of the Total Environment,626, 528–545. 10.1016/j.scitotenv.2018.01.094 PubMed

Mirlean, N., Roisenberg, A., & Chies, J. O. (2005). Copper-based fungicide contamination and metal distribution in Brazilian grape products. Bulletin of Environmental Contamination and Toxicology,75, 968–974. 10.1007/s00128-005-0844-3 PubMed

Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., Karimi, R., & Riyahi Bakhtyari, H. R. (2020). Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health,42, 27–43. 10.1007/s10653-019-00242-5 PubMed

Mlček, J., Trágeová, S., Adámková, A., Adámek, M., Bednářová, M., Škrovánková, S., & Sedláčková, E. (2018). Comparison of the content of selected mineral substances in Czech liturgical and common wines. Potravinarstvo Slovak Journal of Food Sciences,12, 150–156. 10.5219/901

Moghimi Dehkordi, M., Salmanvandi, H., Pournuroz Nodeh, Z., Rasouli Khorjestan, R., Soleimani Dehkordi, K., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering,23, 102729. 10.1016/j.rineng.2024.102729

Naughton, D. P., & Petróczi, A. (2008). Heavy metal ions in wines: Meta-analysis of target hazard quotients reveal health risks. Chemistry Central Journal,2, 22. 10.1186/1752-153X-2-22 PubMed PMC

Nicolini, G., Larcher, R., Pangrazzi, P., & Bontempo, L. (2004). Changes in the contents of micro- and trace-elements in wine due to winemaking treatments. Vitis,43, 41–45. 10.5073/vitis.2004.43.41-45

OIV (2019). OIV-MA-C1–01: Maximum acceptable limits of various substances contained in wine In: Compendium of International Methods of Wine and Must Analysis (Annex C). International Organisation of Vine and Wine. https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-c/annex-c-maximum-acceptable-limits-of-various-substances/maximum-acceptable

Ozaki, H., Watanabe, I., & Kuno, K. (2004). Investigation of the heavy metal sources in relation to automobiles. Water, Air, & Soil Pollution,157, 209–223. 10.1023/B:WATE.0000038897.63818.f7

Papageorgiou, F., Markopoulos, T., Mitropoulos, ACh., & Kyzas, G. Z. (2023). Occurrence of heavy metals in wines for 13 European countries: A short review. Journal of Engineering Science and Technology Review,16, 13–17. 10.25103/jestr.164.02

Peirovi-Minaee, R., Alami, A., Moghaddam, A., & Zarei, A. (2023). Determination of concentration of metals in grapes grown in Gonabad vineyards and assessment of associated health risks. Biological Trace Element Research,201, 3541–3552. 10.1007/s12011-022-03428-8 PubMed

Pinamonti, F., Nicolini, G., Dalpiaz, A., Stringari, G., & Zorzi, G. (1999). Compost use in viticulture: Effect on heavy metal levels in soil and plants. Communications in Soil Science and Plant Analysis,30, 1531–1549. 10.1080/00103629909370305

Płotka-Wasylka, J., Frankowski, M., Simeonov, V., Polkowska, Z., & Namiesnik, J. (2018). Determination of metals content in wine samples by inductively coupled plasma-mass spectrometry. Molecules,23, 2886. 10.3390/molecules23112886 PubMed PMC

Poláková, Š., Kubík, L. & Reininger, D. (2023). Bazální monitoring zemědělských půd. Obsah rizikových prvků. 1995–2019. ÚKZÚZ, Brno. https://mze.gov.cz/public/portal/ukzuz/puda-a-vyziva-rostlin/publikace/bezpecnost-pudy-zpravy/monitoring-pud/rizikove-prvky/bmp-rizikove-prvky-1995-2019

Pořízka, J., Diviš, P., Štursa, V., Punčochářová, L., Slavíková, Z., & Křikala, J. (2021). Impact of organic and integrated pest management on the elemental composition of wine and grapes in a season with high fungal pressure. Journal of Elementology,26, 871–891. 10.5601/jelem.2021.26.3.2051

Commission Regulation. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. https://eur-lex.europa.eu/eli/reg/2023/915/oj

Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J., & de Caritat, P. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry,88, 302–318. 10.1016/j.apgeochem.2017.01.021

Richardson, J. B., & Chase, J. K. (2021). Transfer of macronutrients, micronutrients, and toxic elements from soil to grapes to white wines in uncontaminated vineyards. International Journal of Environmental Research and Public Health,18, 13271. 10.3390/ijerph182413271 PubMed PMC

Saha, A., Gupta, B. S., Patidar, S., & Martínez-Villegas, N. (2022). Evaluation of potential ecological risk index of toxic metals contamination in the soils. Chemistry Proceedings,10, 59. 10.3390/IOCAG2022-12214

Semla, M., Schwarcz, P., Mezey, J., Binkowski, ŁJ., Błaszczyk, M., Formicki, G., Greń, A., Stawarz, R., & Massanyi, P. (2018). Biogenic and risk elements in wines from the Slovak market with the estimation of consumer exposure. Biological Trace Element Research,184, 33–41. 10.1007/s12011-017-1157-1 PubMed PMC

Shimizu, H., Akamatsu, F., Kamada, A., Koyama, K., Iwashita, K., & Goto-Yamamoto, N. (2020). Variation in the mineral composition of wine produced using different winemaking techniques. Journal of Bioscience and Bioengineering,130, 166–172. 10.1016/j.jbiosc.2020.03.012 PubMed

Singh, S., & Devi, N. L. (2023). Heavy metal pollution in atmosphere from vehicular emission. In R. P. Singh, P. Singh, & A. Srivastava (Eds.), Heavy metal toxicity: Environmental concerns, remediation and opportunities (pp. 183–207). Singapore: Springer.

Skála, J., Matys Grygar, T., & Achasova, A. (2024). Novel definition of local baseline values for potentially toxic elements in Czech farmland using adaptive spatial weighting. Applied Geochemistry,170, 106082. 10.1016/j.apgeochem.2024.106082

Soleimani, H., Mansouri, B., Kiani, A., Omer, A. K., Tazik, M., Ebrahimzadeh, G., & Sharafi, K. (2023). Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with chemical fertilizers. Heliyon,9, e14580. 10.1016/j.heliyon.2023.e14580 PubMed PMC

Sun, X., Ma, T., Yu, J., Huang, W., Fang, Y., & Zhan, J. (2018). Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study. Food Chemistry,241, 40–50. 10.1016/j.foodchem.2017.08.074 PubMed

Tariba, B. (2011). Metals in wine - impact on wine quality and health outcomes. Biological Trace Elements Research,144, 143–156. 10.1007/s12011-011-9052-7 PubMed

Turhun, M., & Eziz, M. (2022). Identification of the distribution, contamination levels, sources, and ecological risks of heavy metals in vineyard soils in the main grape production area of China. Environmental Earth Sciences,81, 40. 10.1007/s12665-022-10167-5

Vácha, R., Sáňka, M., Hauptman, I., Zimová, M., & Čechmánková, J. (2014). Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant, Soil and Environment,60, 191–197. 10.17221/909/2013-PSE

Volpe, M. G., La Cara, F., Volpe, F., De Mattia, A., Serino, V., Petitto, F., Zavalloni, C., Limone, F., Pellecchia, R., De Prisco, P. P., & Di Stasio, M. (2009). Heavy metal uptake in the enological food chain. Food Chemistry,117, 553–560. 10.1016/j.foodchem.2009.04.033

Vrabcová J., Daňková Š. & Faltysová K. (2017). Healthy life years in the Czech Republic: Different data sources, different figures. Demografie, 59, 315–331. https://csu.gov.cz/docs/107508/618ee1b8-ecaa-03a2-dde4-f4b5d4387786/vrabcova.pdf

Vystavna, Y., Reelika, R., Nina, R., Olena, D., Valentina, P., & Mykola, K. (2015). Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Scientia Horticulturae,192, 89–96. 10.1016/j.scienta.2015.05.019

Vystavna, Y., Zaichenko, L., Klimenko, N., & Rätsep, R. (2017). Trace metals transfer during vine cultivation and winemaking processes. Journal of the Science of Food and Agriculture,97, 4520–4525. 10.1002/jsfa.8318 PubMed

Wang, J., Ma, T., Wei, M., Lan, T., Bao, S., Zhao, Q., Fang, Y., & Sun, X. (2023). Copper in grape and wine industry: Source, presence, impacts on production and human health, and removal methods. Comprehensive Reviews in Food Science and Food Safety,22, 1794–1816. 10.1111/1541-4337.13130 PubMed

Wang, M., & Zhang, H. (2018). Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. International Journal of Environmental Research and Public Health,15, 1064. 10.3390/ijerph15061064 PubMed PMC

Wong, C., Roberts, S. M., & Saab, I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regulatory Toxicology and Pharmacology,130, 105122. 10.1016/j.yrtph.2022.105122 PubMed

Yang, L., Ren, Q., Zheng, K., Jiao, Z., Ruan, X., & Wang, Y. (2022). Migration of heavy metals in the soil-grape system and potential health risk assessment. Science of the Total Environment,806, 150646. 10.1016/j.scitotenv.2021.150646 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...