Nutrient footprint versus EPA + DHA security in land-locked regions-more of local pond farmed, imported marine fish or fish oil capsules?

. 2023 Sep 09 ; 7 (1) : 48. [epub] 20230909

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37689755

Grantová podpora
22-18597S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 37689755
PubMed Central PMC10492816
DOI 10.1038/s41538-023-00224-z
PII: 10.1038/s41538-023-00224-z
Knihovny.cz E-zdroje

EPA + DHA intake in land-locked central Europe (CE) is barely fulfilled. Imported marine fish/farmed salmonids are likely the backbone of an ailing EPA + DHA security. Supplementing with captured marine fish oil capsules (~0.5 g up to 1.6 g CO2-eq. mg EPA + DHA-1) could be comparable in GHG emissions with fish consumption itself (~1 g to as low as 0.6 g CO2-eq. mg EPA + DHA-1). But synergistic benefits of EPA + DHA intake by consuming fish protein need consideration too. Taking semi-intensive pond carp and intensively farmed salmon as models, we analyzed footprint, eco-services, and resource use efficiency perspectives of achieving EPA + DHA security in a CE region. Despite a lower production footprint, pond-farmed fish greatly lag in EPA + DHA supply (carp 101-181 mg 100 g-1 < salmon 750-1300 mg 100 g-1). It doubles-to-quadruples footprint 'per mg' of EPA + DHA: nitrogen (carp 18.3 > salmon 8.7 mg N), phosphorus (carp 6.8 > salmon 1.6 mg P), and climate change (carp 1.84 > salmon 0.8 g CO2-eq.). With enhancements in pond carp (>300 mg EPA + DHA 100 g-1), these differences may cease to exist. Harnessing EPA + DHA bioaccumulation pathways active in ponds, finishing feeding strategies, and polyculture, the EPA + DHA content in pond fish may be increased. Ecosystem services with EPA + DHA mining from pond food web or high EPA + DHA output-to-input ratio (pond carp 1-200 > RAS salmon 0.75) make ponds an eco-efficient system. As fish consumption in CE must improve, pond-farmed fish would be needed to complement (but not substitute) salmonid/marine fish/oil capsules consumption. Achieving EPA + DHA security with minimum pressure on the environment or global resources.

Zobrazit více v PubMed

EFSA Panel on Dietetic Products, N. & Allergies. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 10, 2815 (2012).

Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. 2019;11:89. PubMed PMC

Hamilton HA, Newton R, Auchterlonie NA, Müller DB. Systems approach to quantify the global omega-3 fatty acid cycle. Nat. Food. 2020;1:59–62.

Shepon A, et al. Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap. Resour. Conserv. Recycling. 2022;181:106260.

Eroldogan OT, et al. From the sea to aquafeed: a perspective overview. Rev. Aquac. 2022 doi: 10.1111/raq.12740. DOI

Golden CD, et al. Aquatic foods to nourish nations. Nature. 2021;598:1–6. PubMed PMC

Troell, M., Jonell, M. & Crona, B. The role of seafood in sustainable and healthy diets. The EAT-Lancet Commission Report Through a Blue Lens. (The Beijer Institute, Stockholm, 2019).

Rocker MM, Mock TS, Turchini GM, Francis DS. The judicious use of finite marine resources can sustain Atlantic salmon (Salmo salar) aquaculture to 2100 and beyond. Nat. Food. 2022;3:644–649. PubMed

FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome. 266 (Food and Agriculture Organization, 2022).

Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016;6:1–9. PubMed PMC

Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–2757. PubMed

Willett W, et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393:447–492. PubMed

Stark KD, Van Elswyk ME, Higgins MR, Weatherford CA, Salem N., Jr Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016;63:132–152. PubMed

Oseeva M, et al. Omega-3 index in the Czech Republic: no difference between urban and rural populations. Chem. Phys. Lipids. 2019;220:23–27. PubMed

Ruprich, J. et al. Omega-3 mastné kyseliny v lidské krvi–omega-3 index. (2021).

EUMOFA. Freshwater Aquaculture in the EU. Freshwater Aquaculture in the EU, 83. https://www.eumofa.eu/documents/20178/442176/Freshwater+aquaculture+in+the+EU.pdf (2021).

Macova M. Food consumption and availability in Czechia in the years 1993–2019. Statistika. 2021;101:436–444.

Macova, M. & Klemova, L. Food Consumption and Changes in the Structure of the Menu. https://www.statistikaamy.cz/2021/04/16/spotreba-potravin-a-zmeny-ve-strukture-jidelnicku (2021).

Miller V, et al. Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database. Lancet Planet. Health. 2022;6:e243–e256. PubMed PMC

Lescinsky H, et al. Health effects associated with consumption of unprocessed red meat: a Burden of Proof study. Nat. Med. 2022;28:2075–207. PubMed PMC

Beal T, Ortenzi F. Eating a nutritionally adequate diet is possible without wrecking long-term health, the planet, or the pocket: authors’ reply. Lancet Planet. Health. 2023 doi: 10.1016/S2542-5196(23)00130-4. PubMed DOI

Crona BI, et al. Four ways blue foods can help achieve food system ambitions across nations. Nature. 2023 doi: 10.1038/s41586-023-05737-x. PubMed DOI PMC

Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv.10.1126/sciadv.aav0474 (2019). PubMed PMC

Finco AMO, et al. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit. Rev. Biotechnol. 2017;37:656–671. PubMed

Steffens W, Wirth M. Freshwater fish-an important source of n-3 polyunsaturated fatty acids: a review. Fish. Aquat. Life. 2005;13:5–16.

Linhartova Z, et al. Proximate and fatty acid composition of 13 important freshwater fish species in central Europe. Aquac. Int. 2018;26:695–711.

Hazards EPoB. Scientific opinion on fish oil for human consumption. Food hygiene, including rancidity. EFSA J. 2010;8:1874.

Parker RWR, Tyedmers PH. Life cycle environmental impacts of three products derived from wild-caught antarctic krill (Euphausia superba) Environ. Sci. Technol. 2012;46:4958–4965. PubMed

Turner R, McLean CH, Silvers KM. Are the health benefits of fish oils limited by products of oxidation? Nutr. Res. Rev. 2006;19:53–62. PubMed

Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr. Rev. Food Sci. Food Saf. 2022;21:1803–1842. PubMed

Adámková V, et al. The consumption of the carp meat and plasma lipids in secondary prevention in the heart ischemic disease patients. Neuroendocrinol. Lett. 2011;32:17–20. PubMed

Mraz, J., Pickova, J. & Kozak, P. Feed for common carp and culture of common carp with increased content of omega 3 fatty acids. Czech Republic Patent (2012).

Mraz J, et al. Intake of carp meat from two aquaculture production systems aimed at secondary prevention of ischemic heart disease—a follow-up study. Physiol. Res. 2017;66:S129. PubMed

Morkore T, et al. Dietary inclusion of Antarctic krill meal during the finishing feed period improves health and fillet quality of Atlantic salmon (Salmo salarL.) Br. J. Nutr. 2020;124:418–431. PubMed PMC

Yildiz M, Eroldogan TO, Ofori-Mensah S, Engin K, Baltaci MA. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture. 2018;488:123–133.

Jobling M. ‘Finishing’ feeds for carnivorous fish and the fatty acid dilution model. Aquac. Res. 2004;35:706–709.

Klobukowski J, et al. Selected parameters of nutritional and pro-health value in the common carp (Cyprinus carpio L.) muscle tissue. J. Food Qual. 2018;2018:1–9.

Sobczak M, et al. Quality improvement of common carp (Cyprinus carpio L.) meat fortified with n-3 PUFA. Food Chem. Toxicol. 2020;139:111261. PubMed

Zajíc T, Mráz J, Kozák P, Adámková V, Picková J. Maso kapra obecného (Cyprinus carpio L.) se zvýšeným obsahem omega 3 mastných kyselin jako nástroj prevence a rehabilitace kardiovaskulárních onemocnění. Interní Med. pro praxi. 2012;14:437–440.

Mraz J, Jia H, Roy K. Biomass losses and circularity along local farm-to-fork: A review of industrial efforts with locally farmed freshwater fish in land-locked Central Europe. Rev. Aquac. 2022 doi: 10.1111/raq.12760. DOI

Mraz J, Zajic T, Pickova J. Culture of common carp (Cyprinus carpio) with defined flesh quality for prevention of cardiovascular diseases using finishing feeding strategy. Neuroendocrinol. Lett. 2012;33:60–67. PubMed

Schultz S, Koussoroplis AM, Changizi-Magrhoor Z, Watzke J, Kainz MJ. Fish oil-based finishing diets strongly increase long-chain polyunsaturated fatty acid concentrations in farm-raised common carp (Cyprinus carpio L.) Aquac. Res. 2015;46:2174–2184.

Bohm, M., Schultz, S., Koussoroplis, A. M. & Kainz, M. J. Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.). Plos One9, ARTN e94759 10.1371/journal.pone.0094759 (2014). PubMed PMC

Roy, K., Vrba, J., Kaushik, S. J. & Mraz, J. Nutrient footprint and ecosystem services of carp production in European fishponds in contrast to EU crop and livestock sectors: European carp production and environment. Journal of Cleaner Production270, 10.1016/j.jclepro.2020.122268 (2020).

Pilecky, M. et al. Common carp (Cyprinus carpio) obtain omega-3 long-chain polyunsaturated fatty acids via dietary supply and endogenous bioconversion in semi-intensive aquaculture ponds. Aquaculture, 738731, 10.1016/j.aquaculture.2022.738731 (2022).

Turkowski K, Dubrowski M. Perception of ecosystem services provided by carp ponds in Pasłęk, Poland. Econ. Environ. 2023;84:197–209.

Palasti, P., Kiss, M., Gulyas, A. & Kerepeczki, E. Expert Knowledge and Perceptions about the Ecosystem Services and Natural Values of Hungarian Fishpond Systems. Water12, ARTN 2144 10.3390/w12082144 (2020).

Quinones RA, Fuentes M, Montes RM, Soto D, Leon-Munoz J. Environmental issues in Chilean salmon farming: a review. Rev. Aquac. 2019;11:375–402.

Taranger GL, et al. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J. Mar. Sci. 2015;72:997–1021.

Ahlgren, G., Vrede, T. & Goedkoop, W. in Lipids in aquatic ecosystems 147–178 (Springer, 2009).

Bell, M. V. & Tocher, D. R. in Lipids in aquatic ecosystems 211–236 (Springer, 2009).

Roy K, et al. End-of-season supplementary feeding in European carp ponds with appropriate plant protein and carbohydrate combinations to ecologically boost productivity: lupine, rapeseed and, triticale. Aquaculture. 2023;577:739906.

van Dam AA, Beveridge M, Azim ME, Verdegem MC. The potential of fish production based on periphyton. Rev. Fish. Biol. Fish. 2002;12:1–31.

Zajic T, Mraz J, Sampels S, Pickova J. Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture. 2013;400:111–119.

Roy, K., Vrba, J., Kajgrova, L. & Mraz, J. The concept of balanced fish nutrition in temperate European fishponds to tackle eutrophication. J. Clean. Prod.10.1016/j.jclepro.2022.132584 (2022).

Zhao J, et al. The role of energy reserves in common carp performance inferred from phenotypic and genetic parameters. Aquaculture. 2021;541:736799.

Urbanek M, Hartvich P, Vacha F, Rost M. Investigation of fat content in market common carp (Cyprinus carpio) flesh during the growing season. Aquac. Nutr. 2010;16:511–519.

Scharnweber K, Chaguaceda F, Eklov P. Fatty acid accumulation in feeding types of a natural freshwater fish population. Oecologia. 2021;196:53–63. PubMed PMC

Monroig Ó, Shu-Chien A, Kabeya N, Tocher DR, Castro LFC. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: from genes to functions. Prog. Lipid Res. 2022;86:101157. PubMed

Tocher DR, Dick JR. Effects of essential fatty acid deficiency and supplementation with docosahexaenoic acid (DHA; 22:6n-3) on cellular fatty acid compositions and fatty acyl desaturation in a cell culture model. Prostaglandins Leukot. Ess. Fat. Acids. 2001;64:11–22. PubMed

Tocher DR, Dick JR. Polyunsaturated fatty acid metabolism in a cell culture model of essential fatty acid deficiency in a freshwater fish, carp (Cyprinus carpio) Fish. Physiol. Biochem. 1999;21:257–267.

Monroig O, Li YY, Tocher DR. Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: High activity in delta-6 desaturases of marine species. Comp. Biochem Phys. B. 2011;159:206–213. PubMed

Polley SD, et al. Differential expression of cold-and diet-specific genes encoding two carp liver Δ9-acyl-CoA desaturase isoforms. Am. J. Physiol. 2003;284:R41–R50. PubMed

Ren H-t, Yu J-h, Xu P, Tang Y-k. Influence of dietary fatty acids on muscle fatty acid composition and expression levels of Δ6 desaturase-like and Elovl5-like elongase in common carp (Cyprinus carpio var. Jian) Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012;163:184–192. PubMed

Schünke M, Wodtke E. Cold-induced increase of Δ9-and Δ6-desaturase activities in endoplasmic membranes of carp liver. Biochim. Biophys. Acta. 1983;734:70–75.

Mraz, J. Lipids in Common Carp (Cyprinus Carpio) and Effects on Human Health PhD thesis. (Swedish University of Agricultural Sciences, 2012).

Marrero, M. et al. Metabolic and molecular evidence for long-chain PUFA biosynthesis capacity in the grass carp Ctenopharyngodon idella. Comp. Biochem. Phys. A10.1016/j.cbpa.2022.111232 (2022). PubMed

Nebeský V, Policar T, Blecha M, Křišťan J, Svačina P. Trends in import and export of fishery products in the Czech Republic during 2010–2015. Aquac. Int. 2016;24:1657–1668.

Vavrečka A, Chaloupková P, Kalous L. Differences in live fish marketing of traditional pond aquaculture and intensive aquaculture in Czechia. Acta Univ. Agric. Silvic. Mendel. Brun. 2019;67:19.

Hao R, Pan J, Tilami SK, Shah BR, Mráz J. Post‐mortem quality changes of common carp (Cyprinus carpio) during chilled storage from two culture systems. J. Sci. Food Agric. 2021;101:91–100. PubMed

Hematyar N, Masilko J, Mraz J, Sampels S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (–20 °C) J. Food Process. Preserv. 2018;42:e13589.

Mráz J, Pickova J. Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio) Fish. Physiol. Biochem. 2009;35:615. PubMed

Aas TS, Ytrestøyl T, Åsgård T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquac. Rep. 2019;15:100216.

Malcorps W, Newton RW, Sprague M, Glencross BD, Little DC. Nutritional characterisation of European aquaculture processing by-products to facilitate strategic utilisation. Front. Sustain. Food Syst. 2021;5:378.

Stankova B, Tvrzicka E, Bayerova H, Bryhn AC, Bryhn M. Herring oil intake results in increased levels of omega-3 fatty acids in erythrocytes in an urban population in the Czech Republic. Arch. Med. Sci. 2018;3:3–9.

Schade S, Stangl GI, Meier T. Distinct microalgae species for food-part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein. J. Appl Phycol. 2020;32:2997–3013.

MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep.10.1038/s41598-020-68231-8 (2020). PubMed PMC

MacLeod, M., Hasan, M. R., Robb, D. H. & Mamun-Ur-Rashid, M. Quantifying and mitigating greenhouse gas emissions from global aquaculture. (Food and Agriculture Organization of the United Nations, 2019).

Winther, U., Hognes, E. S., Jafarzadeh, S. & Ziegler, F. Greenhouse gas emissions of Norwegian seafood products in 2017. SINTEF Ocean (2020).

Weiss F, Leip A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agr. Ecosyst. Environ. 2012;149:124–134.

Wang X, Olsen LM, Reitan KI, Olsen Y. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquac. Environ. Interact. 2012;2:267–283.

Custodio M, Villasante S, Calado R, Lillebo AI. Valuation of Ecosystem Services to promote sustainable aquaculture practices. Rev. Aquac. 2020;12:392–405.

Rector, M. E., Filgueira, R. & Grant, J. Ecosystem services in salmon aquaculture sustainability schemes. Ecosyst. Serv.10.1016/j.ecoser.2021.101379 (2021).

Ytrestoyl, T. et al. Dietary level of the Omega-3 fatty acids EPA and DHA influence the flesh pigmentation in Atlantic salmon. Aquac. Nutr.10.1155/2023/5528942 (2023). PubMed PMC

NRC, N. R. C. Nutrient Requirements of Fish and Shrimp. (National Academies Press, 2011).

Tilami, S. K. et al. Nutritional value of several commercially important river fish species from the Czech Republic. Peerj10.7717/peerj.5729 (2018). PubMed PMC

Xu H, et al. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 2020;80:101064. PubMed

Jurajda P, et al. Carp feeding activity and habitat utilisation in relation to supplementary feeding in a semi-intensive aquaculture pond. Aquac. Int. 2016;24:1627–1640.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace