• This record comes from PubMed

Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma-a review and prospects for the future

. 2023 ; 10 () : 1243531. [epub] 20230830

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Treatment of malignant lymphoma has for years been represented by many cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic irradiation. Although they are in clinical practice for decades, the precise mechanism of cardiotoxicity and effective prevention is still part of the research. At this article we discuss most routinely used anti-cancer drugs in chemotherapeutic regiments for malignant lymphoma with the focus on novel insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at molecular levels may unveil possible targets of cardioprotective supportive therapy or optimization of current therapeutic protocols. Additionally, we review novel specific targeted therapy and its challenges in cardio-oncology.

See more in PubMed

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. (2016) 127(20):2375–90. 10.1182/blood-2016-01-643569 PubMed DOI PMC

Shirakawa S, Kobayashi T, Kita K, Ohno T, Miwa H. [Malignant lymphoma]. Gan to Kagaku Ryoho. (1989) 16(4 Pt 2-1):951–8. PubMed

Villacampa G, Dienstmann R, Bosch F, Abrisqueta P. Combination of novel molecular targeted agent plus R-CHOP-based regimen versus R-CHOP alone in previously untreated diffuse large B-cell lymphoma (DLBCL) patients: a systematic review and meta-analysis. Ann Hematol. (2021) 100(12):2969–78. 10.1007/s00277-021-04623-8 PubMed DOI

Gallamini A, Tarella C, Viviani S, Rossi A, Patti C, Mulé A, et al. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J Clin Oncol. (2018) 36(5):454–62. 10.1200/JCO.2017.75.2543 PubMed DOI

Diehl V, Franklin J, Hasenclever D, Tesch H, Pfreundschuh M, Lathan B, et al. BEACOPP, a new dose-escalated and accelerated regimen, is at least as effective as COPP/ABVD in patients with advanced-stage hodgkin’s lymphoma: interim report from a trial of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. (1998) 16(12):3810–21. 10.1200/JCO.1998.16.12.3810 PubMed DOI

Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and oncology (ESTRO) and the international cardio-oncology society (IC-OS). Eur Heart J. (2022) 43(41):4229–361. 10.1093/eurheartj/ehac244 PubMed DOI

Boyne DJ, Mickle AT, Brenner DR, Friedenreich CM, Cheung WY, Tang KL, et al. Long-term risk of cardiovascular mortality in lymphoma survivors: a systematic review and meta-analysis. Cancer Med. (2018) 7(9):4801–13. 10.1002/cam4.1572 PubMed DOI PMC

van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. (2015) 175(6):1007–17. 10.1001/jamainternmed.2015.1180 PubMed DOI

Jain D, Russell RR, Schwartz RG, Panjrath GS, Aronow W. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. (2017) 19(5):36. 10.1007/s11886-017-0846-x PubMed DOI

Di Marco A, Cassinelli G, Arcamone F. The discovery of daunorubicin. Cancer Treat Rep. (1981) 65(Suppl 4):3–8. PubMed

Di Marco A, Gaetani M, Scarpinato B. Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep. (1969) 53(1):33–7. PubMed

Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. (2011) 7(4):214–20. 10.2174/157340311799960645 PubMed DOI PMC

Rigacci L, Annibali O, Kovalchuk S, Bonifacio E, Pregnolato F, Angrilli F, et al. Nonpeghylated liposomal doxorubicin combination regimen (R-COMP) for the treatment of lymphoma patients with advanced age or cardiac comorbidity. Hematol Oncol. (2020) 38(4):478–86. 10.1002/hon.2764 PubMed DOI PMC

Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. (2004) 56(2):185–229. 10.1124/pr.56.2.6 PubMed DOI

Von Hoff DD, Layard MW, Basa P, Davis HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. (1979) 91(5):710–7. 10.7326/0003-4819-91-5-710 PubMed DOI

Hayek ER, Speakman E, Rehmus E. Acute doxorubicin cardiotoxicity. N Engl J Med. (2005) 352(23):2456–7. 10.1056/NEJM200506093522321 PubMed DOI

Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. (2020) 17(8):474–502. 10.1038/s41569-020-0348-1 PubMed DOI PMC

Ben Aharon I, Bar Joseph H, Tzabari M, Shenkman B, Farzam N, Levi M, et al. Doxorubicin-induced vascular toxicity--targeting potential pathways may reduce procoagulant activity. PLoS One. (2013) 8(9):e75157. 10.1371/journal.pone.0075157 PubMed DOI PMC

Arbel Y, Swartzon M, Justo D. QT Prolongation and torsades de pointes in patients previously treated with anthracyclines. Anticancer Drugs. (2007) 18(4):493–8. 10.1097/CAD.0b013e328012d023 PubMed DOI

Voit J, Tibrewala A, Akhter N. Heart of the matter: reverse takotsubo syndrome in an anthracycline-exposed oncology patient. BMJ Case Rep. (2018) 2018:bcr-2018-226378. 10.1136/bcr-2018-226378 PubMed DOI PMC

Mubarak G, Haddadin M, Samra B, Luhrs C, Taiwo E. Doxorubicin-associated takotsubo cardiomyopathy in a patient with adult T-cell leukemia/lymphoma. Clin Case Rep. (2019) 7(12):2466–71. 10.1002/ccr3.2504 PubMed DOI PMC

Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. (2003) 97(11):2869–79. 10.1002/cncr.11407 PubMed DOI

Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. (2002) 13(5):699–709. 10.1093/annonc/mdf132 PubMed DOI

Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the childhood cancer survivor study cohort. Br Med J. (2009) 339:b4606. 10.1136/bmj.b4606 PubMed DOI PMC

van Dalen EC, van der Pal HJ, Kok WE, Caron HN, Kremer LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer. (2006) 42(18):3191–8. 10.1016/j.ejca.2006.08.005 PubMed DOI

Youssef G, Links M. The prevention and management of cardiovascular complications of chemotherapy in patients with cancer. Am J Cardiovasc Drugs. (2005) 5(4):233–43. 10.2165/00129784-200505040-00003 PubMed DOI

Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. (2005) 131(5):561–78. 10.1111/j.1365-2141.2005.05759.x PubMed DOI

Deng S, Wojnowski L. Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol. (2007) 7(2):129–34. 10.1007/s12012-007-0024-2 PubMed DOI

Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. (2005) 23(30):7685–96. 10.1200/JCO.2005.08.789 PubMed DOI

Villani F, Galimberti M, Zunino F, Monti E, Rozza A, Lanza E, et al. Prevention of doxorubicin-induced cardiomyopathy by reduced glutathione. Cancer Chemother Pharmacol. (1991) 28(5):365–9. 10.1007/BF00685691 PubMed DOI

Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. (1991) 266(32):22028–34. 10.1016/S0021-9258(18)54740-2 PubMed DOI

Senkus E, Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev. (2011) 37(4):300–11. 10.1016/j.ctrv.2010.11.001 PubMed DOI

Scully RE, Lipshultz SE. Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol. (2007) 7(2):122–8. 10.1007/s12012-007-0006-4 PubMed DOI

Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. (1986) 261(7):3060–7. 10.1016/S0021-9258(17)35746-0 PubMed DOI

Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem. (2000) 275(18):13690–8. 10.1074/jbc.275.18.13690 PubMed DOI

Slørdal L, Spigset O. Heart failure induced by non-cardiac drugs. Drug Saf. (2006) 29(7):567–86. 10.2165/00002018-200629070-00003 PubMed DOI

Chua CC, Liu X, Gao J, Hamdy RC, Chua BH. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol. (2006) 290(6):H2606–13. 10.1152/ajpheart.01138.2005 PubMed DOI

Chen B, Peng X, Pentassuglia L, Lim CC, Sawyer DB. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol. (2007) 7(2):114–21. 10.1007/s12012-007-0005-5 PubMed DOI

Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. (2002) 62(16):4592–8. PubMed

Lebrecht D, Walker UA. Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol. (2007) 7(2):108–13. 10.1007/s12012-007-0009-1 PubMed DOI

Binaschi M, Zunino F, Capranico G. Mechanism of action of DNA topoisomerase inhibitors. Stem Cells. (1995) 13(4):369–79. 10.1002/stem.5530130408 PubMed DOI

Lawrence JW, Darkin-Rattray S, Xie F, Neims AH, Rowe TC. 4-Quinolones Cause a selective loss of mitochondrial DNA from mouse L1210 leukemia cells. J Cell Biochem. (1993) 51(2):165–74. 10.1002/jcb.240510208 PubMed DOI

Eidenschink AB, Schröter G, Müller-Weihrich S, Stern H. Myocardial high-energy phosphate metabolism is altered after treatment with anthracycline in childhood. Cardiol Young. (2000) 10(6):610–7. 10.1017/S1047951100008891 PubMed DOI

Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American heart association. Circulation. (2013) 128(17):1927–95. 10.1161/CIR.0b013e3182a88099 PubMed DOI

Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. (2014) 64(9):938–45. 10.1016/j.jacc.2014.06.1167 PubMed DOI

Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, et al. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. (2014) 114(4):626–36. 10.1161/CIRCRESAHA.114.302562 PubMed DOI PMC

Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol. (2009) 46(2):201–12. 10.1016/j.yjmcc.2008.10.025 PubMed DOI PMC

Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. (2012) 18(11):1639–42. 10.1038/nm.2919 PubMed DOI

Finkel T. Cell biology: a clean energy programme. Nature. (2006) 444(7116):151–2. 10.1038/444151a PubMed DOI

Vejpongsa P, Yeh ET. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther. (2014) 95(1):45–52. 10.1038/clpt.2013.201 PubMed DOI

Kersting G, Tzvetkov MV, Huse K, Kulle B, Hafner V, Brockmöller J, et al. Topoisomerase II beta expression level correlates with doxorubicin-induced apoptosis in peripheral blood cells. Naunyn Schmiedebergs Arch Pharmacol. (2006) 374(1):21–30. 10.1007/s00210-006-0091-0 PubMed DOI

Jordan JH, Castellino SM, Meléndez GC, Klepin HD, Ellis LR, Lamar Z, et al. Left ventricular mass change after anthracycline chemotherapy. Circ Heart Fail. (2018) 11(7):e004560. 10.1161/CIRCHEARTFAILURE.117.004560 PubMed DOI PMC

Ferreira de Souza T, Quinaglia A C Silva T, Osorio Costa F, Shah R, Neilan TG, Velloso L, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging. (2018) 11(8):1045–55. 10.1016/j.jcmg.2018.05.012 PubMed DOI PMC

Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE, et al. Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol. (2009) 296(4):H997–H1006. 10.1152/ajpheart.00660.2008 PubMed DOI PMC

Willis MS, Parry TL, Brown DI, Mota RI, Huang W, Beak JY, et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ Heart Fail. (2019) 12(3):e005234. 10.1161/CIRCHEARTFAILURE.118.005234 PubMed DOI PMC

Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci. (2015) 143(2):242–55. 10.1093/toxsci/kfu233 PubMed DOI PMC

Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med. (2013) 65:190–200. 10.1016/j.freeradbiomed.2013.06.024 PubMed DOI

Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. (2010) 121(5):675–83. 10.1161/CIRCULATIONAHA.109.902221 PubMed DOI PMC

Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. (2008) 26(22):3777–84. 10.1200/JCO.2007.14.9401 PubMed DOI PMC

Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. (2007) 49(5):330–52. 10.1016/j.pcad.2006.10.002 PubMed DOI

Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. (2004) 37(4):837–46. 10.1016/j.yjmcc.2004.05.024 PubMed DOI

Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest. (2001) 108(4):585–90. 10.1172/JCI200111334 PubMed DOI PMC

Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B. Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem. (2002) 277(19):17179–87. 10.1074/jbc.M111604200 PubMed DOI

Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. (2001) 104(3):330–5. 10.1161/01.CIR.104.3.330 PubMed DOI

Taniyama Y, Walsh K. Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol. (2002) 34(10):1241–7. 10.1006/jmcc.2002.2068 PubMed DOI

Herzog W. The multiple roles of titin in muscle contraction and force production. Biophys Rev. (2018) 10(4):1187–99. 10.1007/s12551-017-0395-y PubMed DOI PMC

Lou H, Danelisen I, Singal PK. Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. (2005) 288(4):H1925–30. 10.1152/ajpheart.01054.2004 PubMed DOI

van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. (2011) 6:CD003917. 10.1002/14651858.CD003917.pub4 PubMed DOI PMC

Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. (2010) 85(11):894–6. 10.1002/ajh.21840 PubMed DOI

Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. (2016) 37(21):1671–80. 10.1093/eurheartj/ehw022 PubMed DOI PMC

Meattini I, Curigliano G, Terziani F, Becherini C, Airoldi M, Allegrini G, et al. SAFE Trial: an ongoing randomized clinical study to assess the role of cardiotoxicity prevention in breast cancer patients treated with anthracyclines with or without trastuzumab. Med Oncol. (2017) 34(5):75. 10.1007/s12032-017-0938-x PubMed DOI

Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, et al. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: anticancer efficacy and safety. Toxicol Appl Pharmacol. (2023) 461:116405. 10.1016/j.taap.2023.116405 PubMed DOI

Swain SM, Whaley FS, Gerber MC, Ewer MS, Bianchine JR, Gams RA. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. (1997) 15(4):1333–40. 10.1200/JCO.1997.15.4.1333 PubMed DOI

Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. (2004) 351(2):145–53. 10.1056/NEJMoa035153 PubMed DOI

Hasinoff BB, Patel D, Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med. (2003) 35(11):1469–79. 10.1016/j.freeradbiomed.2003.08.005 PubMed DOI

Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. (2007) 67(18):8839–46. 10.1158/0008-5472.CAN-07-1649 PubMed DOI

Seymour L, Bramwell V, Moran LA. Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The provincial systemic treatment disease site group. Cancer Prev Control. (1999) 3(2):145–59. PubMed

Marty M, Espié M, Llombart A, Monnier A, Rapoport BL, Stahalova V, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. (2006) 17(4):614–22. 10.1093/annonc/mdj134 PubMed DOI

Gabizon AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res. (2001) 7(2):223–5. PubMed

McSweeney MD, Price LSL, Wessler T, Ciociola EC, Herity LB, Piscitelli JA, et al. Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG. J Control Release. (2019) 51:311–312:138–46. 10.1016/j.jconrel.2019.08.017 PubMed DOI PMC

O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. (2004) 15(3):440–9. 10.1093/annonc/mdh097 PubMed DOI

Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. (2000) 36(2):517–22. 10.1016/S0735-1097(00)00748-8 PubMed DOI

Vasatova M, Pudil R, Horacek JM, Buchler T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Adv Clin Chem. (2013) 61:33–65. 10.1016/B978-0-12-407680-8.00002-6 PubMed DOI

Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. (2005) 51(8):1405–10. 10.1373/clinchem.2005.050153 PubMed DOI

Mihalcea D, Memis H, Balinisteanu A, Vladareanu AM, Mihaila S, Vinereanu D. Myocardial work-A new tool for early detection of rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone chemotherapy induced-cardiotoxicity in hematological patients. J Clin Ultrasound. (2023) 51(3):377–84. 10.1002/jcu.23388 PubMed DOI

Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. (2014) 27(9):911–39. 10.1016/j.echo.2014.07.012 PubMed DOI

Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. (2010) 55(3):213–20. 10.1016/j.jacc.2009.03.095 PubMed DOI

Dhesi S, Chu MP, Blevins G, Paterson I, Larratt L, Oudit GY, et al. Cyclophosphamide-Induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. (2013) 1(1):2324709613480346. 10.1177/2324709613480346 PubMed DOI PMC

Madondo MT, Quinn M, Plebanski M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat Rev. (2016) 42:3–9. 10.1016/j.ctrv.2015.11.005 PubMed DOI

Gottdiener JS, Appelbaum FR, Ferrans VJ, Deisseroth A, Ziegler J. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med. (1981) 141(6):758–63. 10.1001/archinte.1981.00340060066015 PubMed DOI

Wadia S. Acute cyclophosphamide hemorrhagic myopericarditis: dilemma case report, literature review and proposed diagnostic criteria. J Clin Diagn Res. (2015) 9(11):OE01–OE3. 10.7860/JCDR/2015/15054.6758 PubMed DOI PMC

Ejaz K, Raza MA, Maroof S, Haider MW. Cyclophosphamide-induced atrial fibrillation with rapid ventricular rate. Cureus. (2018) 10(5):e2633. 10.7759/cureus.2633 PubMed DOI PMC

Goldberg MA, Antin JH, Guinan EC, Rappeport JM. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood. (1986) 68(5):1114–8. 10.1182/blood.V68.5.1114.1114 PubMed DOI

Katayama M, Imai Y, Hashimoto H, Kurata M, Nagai K, Tamita K, et al. Fulminant fatal cardiotoxicity following cyclophosphamide therapy. J Cardiol. (2009) 54(2):330–4. 10.1016/j.jjcc.2009.01.006 PubMed DOI

Taniguchi I. Clinical significance of cyclophosphamide-induced cardiotoxicity. Intern Med. (2005) 44(2):89–90. 10.2169/internalmedicine.44.89 PubMed DOI

Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. (1991) 9(7):1215–23. 10.1200/JCO.1991.9.7.1215 PubMed DOI

Atalay F, Gulmez O, Ozsancak Ugurlu A. Cardiotoxicity following cyclophosphamidetherapy: a case report. J Med Case Rep. (2014) 8:252. 10.1186/1752-1947-8-252 PubMed DOI PMC

Kyo M, Ohshimo S, Kida Y, Shimatani T, Torikoshi Y, Suzuki K, et al. Pediatric cardiorespiratory failure successfully managed with venoarterial-venous extracorporeal membrane oxygenation: a case report. BMC Pulm Med. (2016) 16(1):119. 10.1186/s12890-016-0280-7 PubMed DOI PMC

Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci. (2019) 218:112–31. 10.1016/j.lfs.2018.12.018 PubMed DOI

Michel G, Socié G, Gebhard F, Bernaudin F, Thuret I, Vannier JP, et al. Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation--a report from the Société Française de Greffe de Moelle. J Clin Oncol. (1997) 15(6):2238–46. 10.1200/JCO.1997.15.6.2238 PubMed DOI

Petri M, Brodsky R. High-dose cyclophosphamide and stem cell transplantation for refractory systemic lupus erythematosus. JAMA. (2006) 295(5):559–60. 10.1001/jama.295.5.559 PubMed DOI

Traynor AE, Schroeder J, Rosa RM, Cheng D, Stefka J, Mujais S, et al. Treatment of severe systemic lupus erythematosus with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase I study. Lancet. (2000) 356(9231):701–7. 10.1016/S0140-6736(00)02627-1 PubMed DOI

Moyo VM, Smith D, Brodsky I, Crilley P, Jones RJ, Brodsky RA. High-dose cyclophosphamide for refractory autoimmune hemolytic anemia. Blood. (2002) 100(2):704–6. 10.1182/blood-2002-01-0087 PubMed DOI

Krishnan C, Kaplin AI, Brodsky RA, Drachman DB, Jones RJ, Pham DL, et al. Reduction of disease activity and disability with high-dose cyclophosphamide in patients with aggressive multiple sclerosis. Arch Neurol. (2008) 65(8):1044–51. 10.1001/archneurol.65.8.noc80042 PubMed DOI PMC

Verburg R, Toes RE, Fibbe WE, Breedveld FC, van Laar JM. High dose chemotherapy and autologous hematopoietic stem cell transplantation for rheumatoid arthritis: a review. Hum Immunol. (2002) 63(8):627–37. 10.1016/S0198-8859(02)00414-7 PubMed DOI

Petri M, Jones RJ, Brodsky RA. High-dose cyclophosphamide without stem cell transplantation in systemic lupus erythematosus. Arthritis Rheum. (2003) 48(1):166–73. 10.1002/art.10752 PubMed DOI

Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y. Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Res Notes. (2017) 10(1):406. 10.1186/s13104-017-2726-2 PubMed DOI PMC

Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, et al. Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J Evid Based Integr Med. (2018) 23:2156587218757649. 10.1177/2156587218757649 PubMed DOI PMC

Henning RJ, Johnson GT, Coyle JP, Harbison RD. Acrolein can cause cardiovascular disease: a review. Cardiovasc Toxicol. (2017) 17(3):227–36. 10.1007/s12012-016-9396-5 PubMed DOI

Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. (2016) 78(4):661–71. 10.1007/s00280-016-3152-1 PubMed DOI

Ayza MA, Zewdie KA, Tesfaye BA, Wondafrash DZ, Berhe AH. The role of antioxidants in ameliorating cyclophosphamide-induced cardiotoxicity. Oxid Med Cell Longev. (2020) 2020:4965171. 10.1155/2020/4965171 PubMed DOI PMC

Wang HT, Chen TY, Weng CW, Yang CH, Tang MS. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget. (2016) 7(49):80450–64. 10.18632/oncotarget.12608 PubMed DOI PMC

Aladaileh SH, Abukhalil MH, Saghir SAM, Hanieh H, Alfwuaires MA, Almaiman AA, et al. Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules. (2019) 9(8):346. 10.3390/biom9080346 PubMed DOI PMC

El-Sheikh AA, Morsy MA, Okasha AM. Inhibition of NF-κB/TNF-α pathway may be involved in the protective effect of resveratrol against cyclophosphamide-induced multi-organ toxicity. Immunopharmacol Immunotoxicol. (2017) 39(4):180–7. 10.1080/08923973.2017.1318913 PubMed DOI

Nafees S, Rashid S, Ali N, Hasan SK, Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFκB/MAPK pathway. Chem Biol Interact. (2015) 231:98–107. 10.1016/j.cbi.2015.02.021 PubMed DOI

Sayed-Ahmed MM, Aldelemy ML, Al-Shabanah OA, Hafez MM, Al-Hosaini KA, Al-Harbi NO, et al. Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol. (2014) 14(3):232–42. 10.1007/s12012-014-9247-1 PubMed DOI

Sayed-Ahmed MM, Rishk AM, Soloma S, Abdel-aleem S. Protection by L-carnitine against the inhibition of gene expression of heart fatty acid binding protein by chronic administration of doxorubicin. Jour of the Egypt Nat. (2000) 12(4):275–81.

Zhu M, Liu Y, Song Y, Zhang S, Hang C, Wu F, et al. The role of METTL3-mediated N6-methyladenosine (m6A) of JPH2 mRNA in cyclophosphamide-induced cardiotoxicity. Front Cardiovasc Med. (2021) 8:763469. 10.3389/fcvm.2021.763469 PubMed DOI PMC

Caruso G, Privitera A, Antunes BM, Lazzarino G, Lunte SM, Aldini G, et al. The therapeutic potential of carnosine as an antidote against drug-induced cardiotoxicity and neurotoxicity: focus on Nrf2 pathway. Molecules. (2022) 27(14):4452. 10.3390/molecules27144452 PubMed DOI PMC

Chakraborty M, Bhattacharjee A, Kamath JV. Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J Pharmacol. (2017) 49(1):65–70. 10.4103/0253-7613.201015 PubMed DOI PMC

Nishikawa T, Miyahara E, Kurauchi K, Watanabe E, Ikawa K, Asaba K, et al. Mechanisms of fatal cardiotoxicity following high-dose cyclophosphamide therapy and a method for its prevention. PLoS One. (2015) 10(6):e0131394. 10.1371/journal.pone.0131394 PubMed DOI PMC

Refaie MMM, Shehata S, El-Hussieny M, Abdelraheem WM, Bayoumi AMA. Role of ATP-sensitive potassium channel (KATP) and eNOS in mediating the protective effect of nicorandil in cyclophosphamide-induced cardiotoxicity. Cardiovasc Toxicol. (2020) 20(1):71–81. 10.1007/s12012-019-09535-8 PubMed DOI

Stern S, Liang D, Li L, Kurian R, Lynch C, Sakamuru S, et al. Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight. (2022) 7(12):e153868. 10.1172/jci.insight.153868 PubMed DOI PMC

Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. (2003) 22(47):7265–79. 10.1038/sj.onc.1206933 PubMed DOI

Haugnes HS, Wethal T, Aass N, Dahl O, Klepp O, Langberg CW, et al. Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin Oncol. (2010) 28(30):4649–57. 10.1200/JCO.2010.29.9362 PubMed DOI

Nuver J, Smit AJ, Sleijfer DT, van Gessel AI, van Roon AM, van der Meer J, et al. Microalbuminuria, decreased fibrinolysis, and inflammation as early signs of atherosclerosis in long-term survivors of disseminated testicular cancer. Eur J Cancer. (2004) 40(5):701–6. 10.1016/j.ejca.2003.12.012 PubMed DOI

Nuver J, Smit AJ, van der Meer J, van den Berg MP, van der Graaf WT, Meinardi MT, et al. Acute chemotherapy-induced cardiovascular changes in patients with testicular cancer. J Clin Oncol. (2005) 23(36):9130–7. 10.1200/JCO.2005.01.4092 PubMed DOI

Vaughn DJ, Palmer SC, Carver JR, Jacobs LA, Mohler ER. Cardiovascular risk in long-term survivors of testicular cancer. Cancer. (2008) 112(9):1949–53. 10.1002/cncr.23389 PubMed DOI

Ma H, Jones KR, Guo R, Xu P, Shen Y, Ren J. Cisplatin compromises myocardial contractile function and mitochondrial ultrastructure: role of endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. (2010) 37(4):460–5. 10.1111/j.1440-1681.2009.05323.x PubMed DOI

Chalazan B, Samra H, Patel K, Ash D, Mehta A, Konda S, et al. Cisplatin therapy as a risk factor for incident atrial fibrillation. Eur Heart J. (2019) 40(Suppl. 1):2447. 10.1093/eurheartj/ehz745.0121 DOI

Sagcan F, Citak EC, Karpuz D, Alakaya M. A rare entity: recurrent cisplatin-induced bradycardia. J Cancer Res Ther. (2020) 16(3):699–700. 10.4103/jcrt.JCRT_26_18 PubMed DOI

Bang HJ, Lee HY, Kim HJ, Yoon N, Chung IJ, Bae WK. Cisplatin-induced atrioventricular block requiring a pacemaker: two case reports and a literature review. Electrolyte Blood Press. (2020) 18(2):49–52. 10.5049/EBP.2020.18.2.49 PubMed DOI PMC

Altena R, Hummel YM, Nuver J, Smit AJ, Lefrandt JD, de Boer RA, et al. Longitudinal changes in cardiac function after cisplatin-based chemotherapy for testicular cancer. Ann Oncol. (2011) 22(10):2286–93. 10.1093/annonc/mdr408 PubMed DOI

Wachters FM, Van Der Graaf WT, Groen HJ. Cardiotoxicity in advanced non-small cell lung cancer patients treated with platinum and non-platinum based combinations as first-line treatment. Anticancer Res. (2004) 24(3b):2079–83. PubMed

Hu Y, Sun B, Zhao B, Mei D, Gu Q, Tian Z. Cisplatin-induced cardiotoxicity with midrange ejection fraction: a case report and review of the literature. Medicine (Baltimore). (2018) 97(52):e13807. 10.1097/MD.0000000000013807 PubMed DOI PMC

Ozben B, Kurt R, Oflaz H, Sezer M, Basaran M, Goren T, et al. Acute anterior myocardial infarction after chemotherapy for testicular seminoma in a young patient. Clin Appl Thromb Hemost. (2007) 13(4):439–42. 10.1177/1076029607303334 PubMed DOI

Ng KH, Dearden C, Gruber P. Rituximab-induced Takotsubo syndrome: more cardiotoxic than it appears? BMJ Case Rep. (2015) 2015:bcr2014208203. 10.1136/bcr-2014-208203 PubMed DOI PMC

Shipa M, Embleton-Thirsk A, Parvaz M, Santos LR, Muller P, Chowdhury K, et al. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann Intern Med. (2021) 174(12):1647–57. 10.7326/M21-2078 PubMed DOI

Keating GM. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. (2010) 70(11):1445–76. 10.2165/11201110-000000000-00000 PubMed DOI

Foran JM, Rohatiner AZ, Cunningham D, Popescu RA, Solal-Celigny P, Ghielmini M, et al. European Phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol. (2000) 18(2):317–24. 10.1200/JCO.2000.18.2.317 PubMed DOI

Arunprasath P, Gobu P, Dubashi B, Satheesh S, Balachander J. Rituximab induced myocardial infarction: a fatal drug reaction. J Cancer Res Ther. (2011) 7(3):346–8. 10.4103/0973-1482.87003 PubMed DOI

Rabinovitz A, Lombardo M, Schinke C. Rituximab and cardiotoxicity. J Am Coll Cardiol. (2013):10(Suppl.):E582. 10.1016/S0735-1097(13)60582-3 DOI

Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP Chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. (2002) 346(4):235–42. 10.1056/NEJMoa011795 PubMed DOI

Cheungpasitporn W, Kopecky SL, Specks U, Bharucha K, Fervenza FC. Non-ischemic cardiomyopathy after rituximab treatment for membranous nephropathy. J Renal Inj Prev. (2017) 6(1):18–25. 10.15171/jrip.2017.04 PubMed DOI PMC

Madsen ML, Due H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. (2019) 84(3):471–85. 10.1007/s00280-019-03884-5 PubMed DOI PMC

Chatterjee K, Zhang J, Tao R, Honbo N, Karliner JS. Vincristine attenuates doxorubicin cardiotoxicity. Biochem Biophys Res Commun. (2008) 373(4):555–60. 10.1016/j.bbrc.2008.06.067 PubMed DOI PMC

Merkx R, Feijen ELAM, Leerink JM, de Baat EC, Bellersen L, van Dalen EC, et al. Cardiac function in childhood cancer survivors treated with vincristine: echocardiographic results from the DCCSS LATER 2 CARD study. Int J Cardiol. (2022) 369:69–76. 10.1016/j.ijcard.2022.07.049 PubMed DOI

Gros R, Hugon V, Thouret JM, Peigne V. Coronary spasm after an injection of vincristine. Chemotherapy. (2017) 62(3):169–71. 10.1159/000455224 PubMed DOI

Goli AK, Osman MN, Koduri M, Byrd RP, Roy TM. A case report of vinorelbine monotherapy-related acute bronchospasm and non-ST elevation acute coronary syndrome. Tenn Med. (2011) 104(1):47–8. PubMed

Dietrich J. Neurotoxicity of cancer therapies. Continuum (Minneap Minn). (2020) 26(6):1646–72. 10.1212/CON.0000000000000943 PubMed DOI

Fyfe AJ, McKay P. Toxicities associated with bleomycin. J R Coll Physicians Edinb. (2010) 40(3):213–5. 10.4997/JRCPE.2010.306 PubMed DOI

Yamamoto T. Bleomycin and the skin. Br J Dermatol. (2006) 155(5):869–75. 10.1111/j.1365-2133.2006.07474.x PubMed DOI

Ishii H, Takada K. Bleomycin induces E-selectin expression in cultured umbilical vein endothelial cells by increasing its mRNA levels through activation of NF-kappaB/Rel. Toxicol Appl Pharmacol. (2002) 184(2):88–97. 10.1006/taap.2002.9499 PubMed DOI

Bokemeyer C, Berger CC, Kuczyk MA, Schmoll HJ. Evaluation of long-term toxicity after chemotherapy for testicular cancer. J Clin Oncol. (1996) 14(11):2923–32. 10.1200/JCO.1996.14.11.2923 PubMed DOI

White DA, Schwartzberg LS, Kris MG, Bosl GJ. Acute chest pain syndrome during bleomycin infusions. Cancer. (1987) 59(9):1582–5. 10.1002/1097-0142(19870501)59:9<1582::AID-CNCR2820590909>3.0.CO;2-# PubMed DOI

Didagelos M, Boutis A, Diamantopoulos N, Sotiriadou M, Fotiou C. Bleomycin cardiotoxicity during chemotherapy for an ovarian germ cell tumor. Hippokratia. (2013) 17(2):187–8. PubMed PMC

Gozhenko A, Bestanchuk O, Kaschenko O, Narbutova T. Cumulative cardiotoxic effect of bleomycin in experiment. J Educ Health Sport. (2021) 11:301–8. 10.12775/JEHS.2021.11.06.033 DOI

Sanada M, Hidaka M, Takagi Y, Takano TY, Nakatsu Y, Tsuzuki T, et al. Modes of actions of two types of anti-neoplastic drugs, dacarbazine and ACNU, to induce apoptosis. Carcinogenesis. (2007) 28(12):2657–63. 10.1093/carcin/bgm188 PubMed DOI

Etebari M, Jafarian-Dehkordi A, Lame V. Evaluation of protective effect of amifostine on dacarbazine induced genotoxicity. Res Pharm Sci. (2015) 10(1):68–74. PubMed PMC

Montecucco A, Zanetta F, Biamonti G. Molecular mechanisms of etoposide. Excli J. (2015) 14:95–108. 10.17179/excli2015-561 PubMed DOI PMC

Meresse P, Dechaux E, Monneret C, Bertounesque E. Etoposide: discovery and medicinal chemistry. Curr Med Chem. (2004) 11(18):2443–66. 10.2174/0929867043364531 PubMed DOI

Escoto H, Ringewald J, Kalpatthi R. Etoposide-related cardiotoxicity in a child with haemophagocytic lymphohistiocytosis. Cardiol Young. (2010) 20(1):105–7. 10.1017/S1047951109991272 PubMed DOI

Akam-Venkata J, Franco VI, Lipshultz SE. Late cardiotoxicity: issues for childhood cancer survivors. Curr Treat Options Cardiovasc Med. (2016) 18(7):47. 10.1007/s11936-016-0466-6 PubMed DOI

Gill D, Mann K, Kaur S, Ruiz VG. Rare cause of cardiotoxicity. Arch Med. (2017) 9(1):1–2. 10.21767/1989-5216.1000193 DOI

Kridis WB, Khanfir A, Triki F, Frikha M. An exceptional case of atrial fibrillation arrhythmia induced by etoposide. Curr Drug Saf. (2013) 8(4):287–9. 10.2174/15748863113080990047 PubMed DOI

Ozkan HA, Bal C, Gulbas Z. Assessment and comparison of acute cardiac toxicity during high-dose cyclophosphamide and high-dose etoposide stem cell mobilization regimens with N-terminal pro-B-type natriuretic peptide. Transfus Apher Sci. (2014) 50(1):46–52. 10.1016/j.transci.2013.12.001 PubMed DOI

Shabana S, Aden S, Abdulrahman N, Riaz S. The efficacy of etoposide on H9c2 cardiomyoblasts against doxorubicin induced cardiotoxicity. Anat Physiol. (2015) 5(4):1–5. 10.4172/2161-0940.1000186 DOI

Olayinka ET, Ore A, Adeyemo OA, Ola OS, Olotu OO, Echebiri RC. Quercetin, a flavonoid antioxidant, ameliorated procarbazine-induced oxidative damage to murine tissues. Antioxidants (Basel). (2015) 4(2):304–21. 10.3390/antiox4020304 PubMed DOI PMC

Cruz-Topete D, Myers PH, Foley JF, Willis MS, Cidlowski JA. Corticosteroids are essential for maintaining cardiovascular function in male mice. Endocrinology. (2016) 157(7):2759–71. 10.1210/en.2015-1604 PubMed DOI PMC

Krishnamoorthy A, Mentz RJ, Hyland KA, McMillan EB, Patel CB, Milano CA, et al. A crisis of the heart: an acute reversible cardiomyopathy bridged to recovery in a patient with Addison’s disease. ASAIO J. (2013) 59(6):668–70. 10.1097/MAT.0000000000000001 PubMed DOI

Vasheghani-Farahani A, Sahraian MA, Darabi L, Aghsaie A, Minagar A. Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J Neurol Sci. (2011) 309(1–2):75–8. 10.1016/j.jns.2011.07.018 PubMed DOI

Taylor MR, Gaco D. Symptomatic sinus bradycardia after a treatment course of high-dose oral prednisone. J Emerg Med. (2013) 45(3):e55–8. 10.1016/j.jemermed.2013.04.020 PubMed DOI

Nagakura A, Morikawa Y, Sakakibara H, Miura M. Bradycardia associated with prednisolone in children with severe kawasaki disease. J Pediatr. (2017) 185:106–11.e1. 10.1016/j.jpeds.2017.02.074 PubMed DOI

Al Shibli A, Al Attrach I, Hamdan MA. Bradycardia following oral corticosteroid use: case report and literature review. Arab J Nephrol Transplant. (2012) 5(1):47–9. PubMed

Khandelwal K, Madathala RR, Chennaiahgari N, Yousuffuddin M. Steroid-induced sinus bradycardia. Cureus. (2021) 13(5):e15065. 10.7759/cureus.15065 PubMed DOI PMC

Üsküdar Cansu D, Bodakçi E, Korkmaz C. Dose-dependent bradycardia as a rare side effect of corticosteroids: a case report and review of the literature. Rheumatol Int. (2018) 38(12):2337–43. 10.1007/s00296-018-4167-1 PubMed DOI

John PR, Khaladj-Ghom A, Still KL. Bradycardia associated with steroid use for laryngeal edema in an adult: a case report and literature review. Case Rep Cardiol. (2016) 2016:9785467. 10.1155/2016/9785467 PubMed DOI PMC

Schellong G, Riepenhausen M, Bruch C, Kotthoff S, Vogt J, Bölling T, et al. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer. (2010) 55(6):1145–52. 10.1002/pbc.22664 PubMed DOI

Maraldo MV, Brodin NP, Vogelius IR, Aznar MC, Munck Af Rosenschöld P, Petersen PM, et al. Risk of developing cardiovascular disease after involved node radiotherapy versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. (2012) 83(4):1232–7. 10.1016/j.ijrobp.2011.09.020 PubMed DOI

Horimoto M, Igarashi K, Takenaka T, Batra S. Pulmonary infundibular stenosis, coronary artery disease, and aortic regurgitation caused by mediastinal radiation. Am Heart J. (1993) 126(4):1002–5. 10.1016/0002-8703(93)90723-M PubMed DOI

Lund MB, Ihlen H, Voss BM, Abrahamsen AF, Nome O, Kongerud J, et al. Increased risk of heart valve regurgitation after mediastinal radiation for Hodgkin’s disease: an echocardiographic study. Heart. (1996) 75(6):591–5. 10.1136/hrt.75.6.591 PubMed DOI PMC

Bijl JM, Roos MM, van Leeuwen-Segarceanu EM, Vos JM, Bos WW, Biesma DH, et al. Assessment of valvular disorders in survivors of hodgkin’s lymphoma treated by mediastinal radiotherapy ± chemotherapy. Am J Cardiol. (2016) 117(4):691–6. 10.1016/j.amjcard.2015.11.027 PubMed DOI

Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. (2003) 42(4):743–9. 10.1016/S0735-1097(03)00759-9 PubMed DOI

Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, et al. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol. (2006) 168(2):649–58. 10.2353/ajpath.2006.050409 PubMed DOI PMC

McEniery PT, Dorosti K, Schiavone WA, Pedrick TJ, Sheldon WC. Clinical and angiographic features of coronary artery disease after chest irradiation. Am J Cardiol. (1987) 60(13):1020–4. 10.1016/0002-9149(87)90345-6 PubMed DOI

Brosius FC, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med. (1981) 70(3):519–30. 10.1016/0002-9343(81)90574-X PubMed DOI

van den Belt-Dusebout AW, Nuver J, de Wit R, Gietema JA, ten Bokkel Huinink WW, Rodrigus PT, et al. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol. (2006) 24(3):467–75. 10.1200/JCO.2005.02.7193 PubMed DOI

Řiháčková E, Elbl L, Řiháček M, Holická M, Kala P. Anti-cancer therapy-induced metabolic syndrome. Vnitr Lek. (2021) 67(6):334–8. 10.36290/vnl.2021.089 PubMed DOI

van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of hodgkin lymphoma. J Clin Oncol. (2016) 34(3):235–43. 10.1200/JCO.2015.63.4444 PubMed DOI

Chello M, Mastroroberto P, Romano R, Zofrea S, Bevacqua I, Marchese AR. Changes in the proportion of types I and III collagen in the left ventricular wall of patients with post-irradiative pericarditis. Cardiovasc Surg. (1996) 4(2):222–6. 10.1016/0967-2109(96)82320-9 PubMed DOI

Cohen SI, Bharati S, Glass J, Lev M. Radiotherapy as a cause of complete atrioventricular block in hodgkin’s disease. An electrophysiological-pathological correlation. Arch Intern Med. (1981) 141(5):676–9. 10.1001/archinte.1981.00340050122029 PubMed DOI

Modi S, Baig W. Radiotherapy-induced Tako-tsubo cardiomyopathy. Clin Oncol (R Coll Radiol). (2009) 21(4):361–2. 10.1016/j.clon.2009.01.005 PubMed DOI

Giyanani N, Som S. When too many hits break the heart: a case of radiation induced takotsubo cardiomyopathy. Am J Med Sci. (2021) 362(2):215–9. 10.1016/j.amjms.2021.03.014 PubMed DOI

Galper SL, Yu JB, Mauch PM, Strasser JF, Silver B, Lacasce A, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. (2011) 117(2):412–8. 10.1182/blood-2010-06-291328 PubMed DOI

Chow EJ, Chen Y, Hudson MM, Feijen EAM, Kremer LC, Border WL, et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer. J Clin Oncol. (2018) 36(1):44–52. 10.1200/JCO.2017.74.8673 PubMed DOI PMC

Vordermark D, Seufert I, Schwab F, Kölbl O, Kung M, Angermann C, et al. 3-D Reconstruction of anterior mantle-field techniques in Hodgkin’s disease survivors: doses to cardiac structures. Radiat Oncol. (2006) 1:10. 10.1186/1748-717X-1-10 PubMed DOI PMC

Zamorano JL, Gottfridsson C, Asteggiano R, Atar D, Badimon L, Bax JJ, et al. The cancer patient and cardiology. Eur J Heart Fail. (2020) 22(12):2290–309. 10.1002/ejhf.1985 PubMed DOI PMC

Barlaz Us S, Vezir O, Yildirim M, Bayrak G, Yalin S, Balli E, et al. Protective effect of N-acetyl cysteine against radiotherapy-induced cardiac damage. Int J Radiat Biol. (2020) 96(5):661–70. 10.1080/09553002.2020.1721605 PubMed DOI

Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, et al. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther. (2020) 5(1):15. 10.1038/s41392-020-0113-2 PubMed DOI PMC

Dolladille C, Ederhy S, Allouche S, Dupas Q, Gervais R, Madelaine J, et al. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J Immunother Cancer. (2020) 8(1):1–9. 10.1136/jitc-2019-000261 PubMed DOI PMC

McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. (2014) 124(25):3829–30. 10.1182/blood-2014-10-604272 PubMed DOI

Arustamyan M, Kibrik P, Hatipoglu D, Bungo B, Mentias A, Hill BT, et al. The safety of Bruton’s tyrosine kinase inhibitors in B-cell malignancies: a systematic review. Eur J Haematol. (2022) 109(6):696–710. 10.1111/ejh.13854 PubMed DOI

Mato AR, Shah NN, Jurczak W, Cheah CY, Pagel JM, Woyach JA, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. Lancet. (2021) 397(10277):892–901. 10.1016/S0140-6736(21)00224-5 PubMed DOI PMC

Chen X, Jiang A, Zhang R, Fu X, Liu N, Shi C, et al. Immune checkpoint inhibitor-associated cardiotoxicity in solid tumors: real-world incidence, risk factors, and prognostic analysis. Front Cardiovasc Med. (2022) 9:882167. 10.3389/fcvm.2022.882167 PubMed DOI PMC

Lin N, Song Y, Zhu J. Immune checkpoint inhibitors in malignant lymphoma: advances and perspectives. Chin J Cancer Res. (2020) 32(3):303–18. 10.21147/j.issn.1000-9604.2020.03.03 PubMed DOI PMC

Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. (2016) 375(18):1749–55. 10.1056/NEJMoa1609214 PubMed DOI PMC

Nykl R, Fischer O, Vykoupil K, Taborsky M. A unique reason for coronary spasm causing temporary ST elevation myocardial infarction (inferior STEMI)—systemic inflammatory response syndrome after use of pembrolizumab. Arch Med Sci Atheroscler Dis. (2017) 2:e100–2. 10.5114/amsad.2017.72531 PubMed DOI PMC

Ganatra S, Neilan TG. Immune checkpoint inhibitor-associated myocarditis. Oncologist. (2018) 23(8):879–86. 10.1634/theoncologist.2018-0130 PubMed DOI PMC

Palaskas N, Lopez-Mattei J, Durand JB, Iliescu C, Deswal A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J Am Heart Assoc. (2020) 9(2):e013757. 10.1161/JAHA.119.013757 PubMed DOI PMC

Camilli M, Maggio L, Tinti L, Lamendola P, Lanza GA, Crea F, et al. Chimeric antigen receptor-T cell therapy-related cardiotoxicity in adults and children cancer patients: a clinical appraisal. Front Cardiovasc Med. (2023) 10:1090103. 10.3389/fcvm.2023.1090103 PubMed DOI PMC

Rao A, Stewart A, Eljalby M, Ramakrishnan P, Anderson LD, Awan FT, et al. Cardiovascular disease and chimeric antigen receptor cellular therapy. Front Cardiovasc Med. (2022) 9:932347. 10.3389/fcvm.2022.932347 PubMed DOI PMC

Lee DH, Chandrasekhar S, Jain M, Chavez J, Shah B, Lazaryan A, et al. Abstract 9828: active surveillance of cardiotoxicity with cardiac biomarkers during chimeric antigen receptor T-cell therapy. Circulation. (2021) 144(Suppl_1):A9828-A.

Totzeck M, Michel L, Lin Y, Herrmann J, Rassaf T. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur Heart J. (2022) 43(20):1928–40. 10.1093/eurheartj/ehac106 PubMed DOI PMC

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 -. Identifier NCT02943590, STOP-CA (Statins TO Prevent the Cardiotoxicity From Anthracyclines) (2022). Available at: https://clinicaltrials.gov/ct2/show/study/NCT02943590?term=NCT02943590&draw=2&rank=1 (Cited 2023 May 8).

Neilan TG. The STOP-CA trial. Presented at: ACC/WCC 2023. March 4, 2023.:New Orleans, LA.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 -. Identifier NCT02818517, Evaluation and Management of Cardio Toxicity in Oncologic Patients. (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT02818517?term=NCT02818517&draw=2&rank=1 (Cited 2023 May 8).

Stein-Merlob AF, Rothberg MV, Holman P, Yang EH. Immunotherapy-Associated cardiotoxicity of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy: diagnostic and management challenges and strategies. Curr Cardiol Rep. (2021) 23(3):11. 10.1007/s11886-021-01440-3 PubMed DOI PMC

Yu S, Yi M, Qin S, Wu K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer. (2019) 18(1):125. 10.1186/s12943-019-1057-4 PubMed DOI PMC

Alvi RM, Frigault MJ, Fradley MG, Jain MD, Mahmood SS, Awadalla M, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J Am Coll Cardiol. (2019) 74(25):3099–108. 10.1016/j.jacc.2019.10.038 PubMed DOI PMC

Yarmarkovich M, Marshall QF, Warrington JM, Premaratne R, Farrel A, Groff D, et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature. (2021) 599(7885):477–84. 10.1038/s41586-021-04061-6 PubMed DOI PMC

Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. (2023) 20(1):49–62. 10.1038/s41571-022-00704-3 PubMed DOI PMC

Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. (2013) 5(197):197ra03. 10.1126/scitranslmed.3006034 PubMed DOI PMC

Abbott RC, Hughes-Parry HE, Jenkins MR. To go or not to go? Biological logic gating engineered T cells. J Immunother Cancer. (2022) 10(4):1–10. 10.1136/jitc-2021-004185 PubMed DOI PMC

Keam SJ. Pirtobrutinib: first approval. Drugs. (2023) 83(6):547–53. 10.1007/s40265-023-01860-1 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...