Biodistribution and toxicity assessment of methoxyphenyl phosphonium carbosilane dendrimers in 2D and 3D cell cultures of human cancer cells and zebrafish embryos
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37726330
PubMed Central
PMC10509138
DOI
10.1038/s41598-023-42850-3
PII: 10.1038/s41598-023-42850-3
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované MeSH
- dendrimery * toxicita MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- techniky 3D buněčné kultury MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- carbosilane MeSH Prohlížeč
- dendrimery * MeSH
The consideration of human and environmental exposure to dendrimers, including cytotoxicity, acute toxicity, and cell and tissue accumulation, is essential due to their significant potential for various biomedical applications. This study aimed to evaluate the biodistribution and toxicity of a novel methoxyphenyl phosphonium carbosilane dendrimer, a potential mitochondria-targeting vector for cancer therapeutics, in 2D and 3D cancer cell cultures and zebrafish embryos. We assessed its cytotoxicity (via MTT, ATP, and Spheroid growth inhibition assays) and cellular biodistribution. The dendrimer cytotoxicity was higher in cancer cells, likely due to its specific targeting to the mitochondrial compartment. In vivo studies using zebrafish demonstrated dendrimer distribution within the vascular and gastrointestinal systems, indicating a biodistribution profile that may be beneficial for systemic therapeutic delivery strategies. The methoxyphenyl phosphonium carbosilane dendrimer shows promise for applications in cancer cell delivery, but additional studies are required to confirm these findings using alternative labelling methods and more physiologically relevant models. Our results contribute to the growing body of evidence supporting the potential of carbosilane dendrimers as vectors for cancer therapeutics.
Zobrazit více v PubMed
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009;71:349–358. PubMed PMC
Akbarzadeh A, et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. PubMed PMC
Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr. Pharm. Des. 2006;12(36):4669–4684. PubMed
Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF. Virus-based nanoparticles as versatile nanomachines. Annu. Rev. Virol. 2015;2:379–401. PubMed PMC
Newkome, G. R., Moorefield, C. N. & Vögtle, F. Dendrimers and Dendrons: Concepts, Syntheses, Applications. (Wiley, 2001). 10.1002/3527600612.
Tamura M. Self-assembled materials for catalysis. Nanotechnology. 2017;22:329–49.
Dufes C, Uchegbu I, Schatzlein A. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005;57:2177–2202. PubMed
Omidi Y, Hollins AJ, Drayton RM, Akhtar S. Polypropylenimine dendrimer-induced gene expression changes: The effect of complexation with DNA, dendrimer generation and cell type. J. Drug Target. 2005;13:431–443. PubMed
Sharma A, et al. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8:5529–5547. PubMed PMC
Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010;394:122–142. PubMed
Ghosh S, et al. In-vivo & in-vitro toxicity test of molecularly engineered PCMS: A potential drug for wireless remote controlled treatment. Toxicol. Rep. 2018;5:1044–1052. PubMed PMC
Agashe HB, Dutta T, Garg M, Jain NK. Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol. 2010;58:1491–1498. PubMed
Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artific. Cells Nanomed. Biotechnol. 2016;44:1626–1634. PubMed
He H, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–487. PubMed
Caminade A-M, Moineau-Chane Ching KI, Delavaux-Nicot B. The usefulness of trivalent phosphorus for the synthesis of dendrimers. Molecules. 2021;26:269. PubMed PMC
Twibanire J, Grindley TB. Polyester Dendrimers. Polymers. 2012;4:794–879.
Simanek, E. E. & Enciso, A. E. Chapter 10. Cationic triazine dendrimers: synthesis, characterization, and biological applications. in Polymer Chemistry Series (eds. Samal, S. & Dubruel, P.) 249–267 (Royal Society of Chemistry, 2014). 10.1039/9781782620105-00249.
Rabiee N, et al. Carbosilane dendrimers: Drug and gene delivery applications. J. Drug Deliv. Sci. Technol. 2020;59:101879.
Lo S-T, et al. Biological assessment of triazine dendrimer: toxicological profiles, solution behavior, biodistribution, drug release and Efficacy in a PEGylated. Paclitaxel Construct. Mol. Pharmaceutics. 2010;7:993–1006. PubMed PMC
Strašák T, et al. Phosphonium carbosilane dendrimers for biomedical applications—synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017;7:18724–18744.
Wrobel D, et al. Phosphonium carbosilane dendrimers—interaction with a simple biological membrane model. Phys. Chem. Chem. Phys. 2018;20:14753–14764. PubMed
Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35:3147–3154. PubMed
Weiswald L-B, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. PubMed PMC
Madorran E, Stožer A, Bevc S, Maver U. In vitro toxicity model: Upgrades to bridge the gap between preclinical and clinical research. Bosn. J. Basic. Med. Sci. 2019 doi: 10.17305/bjbms.2019.4378. PubMed DOI PMC
Ghosh S, et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: A high density oligonucleotide array study. J. Cell. Physiol. 2005;204:522–531. PubMed
Sivaraman A, et al. A microscale in vitro physiological model of the liver: Predictive screens for drug metabolism and enzyme induction. CDM. 2005;6:569–591. PubMed
Hackenberg S, et al. Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ. Mol. Mutagen. 2011;52:582–589. PubMed
Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat. Rev. Drug. Discov. 2005;4:35–44. PubMed
OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. (OECD, 2013). 10.1787/9789264203709-en.
Hagstrom D, Truong L, Zhang S, Tanguay R, Collins E-MS. Comparative analysis of zebrafish and planarian model systems for developmental neurotoxicity screens using an 87-compound library. Toxicol. Sci. 2019;167:15–25. PubMed PMC
Liegertová M, et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology. 2018;12:797–818. PubMed
E3 medium (for zebrafish embryos). Cold Spring Harb Protoc2011, pdb.rec66449 (2011).
Carter KM, Woodley CM, Brown RS. A review of tricaine methanesulfonate for anesthesia of fish. Rev. Fish. Biol. Fisheries. 2011;21:51–59.
Somasagara RR, et al. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci. Rep. 2021;11:5715. PubMed PMC
Pacheco AG, de Rebelo MF. A simple R-based function to estimate lethal concentrations. Marine Environ. Res. 2013;91:41–44. PubMed
R Core Team. R: A language and environment for statistical computing. (2020).
Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993;303:474–482. PubMed
Zanoni M, et al. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016;6:19103. PubMed PMC
Herma R, et al. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int. J. Pharm. 2019;562:51–65. PubMed
van den Brand D, Massuger LF, Brock R, Verdurmen WPR. Mimicking tumors: Toward more predictive in vitro models for peptide-and protein-conjugated drugs. Bioconjugate Chem. 2017;28:846–856. PubMed PMC
Olive PL, Durand RE. Drug and radiation resistance in spheroids: Cell contact and kinetics. Cancer Metast. Rev. 1994;13:121–138. PubMed
Battogtokh G, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta. Pharm. Sinica B. 2018;8:862–880. PubMed PMC
Padh H, Niraj S. Organelle targeting: Third level of drug targeting. DDDT. 2013 doi: 10.2147/DDDT.S45614. PubMed DOI PMC
Sun Y, et al. Polymeric nanoparticles for mitochondria targeting mediated robust cancer therapy. Front. Bioeng. Biotechnol. 2021;9:755727. PubMed PMC
Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–352. PubMed PMC
Bajpai A, et al. Chimeric nanoparticles for targeting mitochondria in cancer cells. Nanoscale Adv. 2022;4:1112–1118. PubMed PMC
Haque E, Ward A. Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials. 2018;8:561. PubMed PMC
Pitt JA, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio) Aquat. Toxicol. 2018;194:185–194. PubMed PMC
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat. Nanotech. 2007;2:469–478. PubMed
Jones CG, et al. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Appl. Mater. Interf. 2016;8:7623–7630. PubMed
Poon CK, et al. Fluorescent labeling and biodistribution of latex nanoparticles formed by surfactant-free RAFT emulsion polymerization. Macromol. Biosci. 2017;17:1600366. PubMed
Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. Eur. J. Physiol. 2013;465:347–359. PubMed
Álamo P, et al. Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles. Pharmaceutics. 2020;12:1004. PubMed PMC
Sugiura G, Kühn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19:2135–2165. PubMed PMC