Reversible Pulsed Electrical Fields as an In Vivo Tool to Study Cardiac Electrophysiology: The Advent of Pulsed Field Mapping
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37727989
PubMed Central
PMC10578517
DOI
10.1161/circep.123.012018
Knihovny.cz E-zdroje
- Klíčová slova
- catheters, electroporation, follow-up studies, swine, transients and migrants,
- MeSH
- atrioventrikulární blokáda * MeSH
- atrioventrikulární nodální reentry tachykardie * MeSH
- elektrofyziologické techniky kardiologické MeSH
- elektrokardiografie MeSH
- katetrizační ablace * škodlivé účinky metody MeSH
- lidé MeSH
- nodus atrioventricularis MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: During electrophysiological mapping of tachycardias, putative target sites are often only truly confirmed to be vital after observing the effect of ablation. This lack of mapping specificity potentiates inadvertent ablation of innocent cardiac tissue not relevant to the arrhythmia. But if myocardial excitability could be transiently suppressed at critical regions, their suitability as targets could be conclusively determined before delivering tissue-destructive ablation lesions. We studied whether reversible pulsed electric fields (PFREV) could transiently suppress electrical conduction, thereby providing a means to dissect tachycardia circuits in vivo. METHODS: PFREV energy was delivered from a 9-mm lattice-tip catheter to the atria of 12 swine and 9 patients, followed by serial electrogram assessments. The effects on electrical conduction were explored in 5 additional animals by applying PFREV to the atrioventricular node: 17 low-dose (PFREV-LOW) and 10 high-dose (PFREV-HIGH) applications. Finally, in 3 patients manifesting spontaneous tachycardias, PFREV was applied at putative critical sites. RESULTS: In animals, the immediate post-PFREV electrogram amplitudes diminished by 74%, followed by 78% recovery by 5 minutes. Similarly, in patients, a 69.9% amplitude reduction was followed by 84% recovery by 3 minutes. Histology revealed only minimal to no focal, superficial fibrosis. PFREV-LOW at the atrioventricular node resulted in transient PR prolongation and transient AV block in 59% and 6%, while PFREV-HIGH caused transient PR prolongation and transient AV block in 30% and 50%, respectively. The 3 tachycardia patients had atypical atrial flutters (n=2) and atrioventricular nodal reentrant tachycardia. PFREV at putative critical sites reproducibly terminated the tachycardias; ablation rendered the tachycardias noninducible and without recurrence during 1-year follow-up. CONCLUSIONS: Reversible electroporation pulses can be applied to myocardial tissue to transiently block electrical conduction. This technique of pulsed field mapping may represent a novel electrophysiological tool to help identify the critical isthmus of tachycardia circuits.
Department of Cardiology Homolka Hospital Prague Czech Republic
Department of Cardiovascular Diseases Vilnius University Lithuania
Helmsley Electrophysiology Center Icahn School of Medicine at Mount Sinai New York NY
Zobrazit více v PubMed
Patel AM, d’Avila A, Neuzil P, Kim SJ, Mela T, Singh JP, Ruskin JN, Reddy VY. Atrial tachycardia after ablation of persistent atrial fibrillation: identification of the critical isthmus with a combination of multielectrode activation mapping and targeted entrainment mapping. Circ Arrhythmia Electrophysiol. 2008;1:14–22. doi: 10.1161/CIRCEP.107.748160 PubMed
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - a review. Bioelectrochemistry. 2021;141:107871. doi: 10.1016/j.bioelechem.2021.107871 PubMed
van Driel VJ, Neven K, van Wessel H, Vink A, Doevendans PA, Wittkampf FH. Low vulnerability of the right phrenic nerve to electroporation ablation. Heart Rhythm. 2015;12:1838–1844. doi: 10.1016/j.hrthm.2015.05.012 PubMed
Neven K, van Es R, van Driel V, van Wessel H, Fidder H, Vink A, Doevendans P, Wittkampf F. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol. 2017;10:e004672. doi: 10.1161/CIRCEP.116.004672 PubMed
Koruth J, Kuroki K, Iwasawa J, Enomoto Y, Viswanathan R, Brose R, Buck ED, Speltz M, Dukkipati SR, Reddy VY. Preclinical evaluation of pulsed field ablation: electrophysiological and histological assessment of thoracic vein isolation. Circ Arrhythm Electrophysiol. 2019;12:e007781. doi: 10.1161/CIRCEP.119.007781 PubMed PMC
Stewart MT, Haines DE, Verma A, Kirchhof N, Barka N, Grassl E, Howard B. Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart Rhythm. 2019;16:754–764. doi: 10.1016/j.hrthm.2018.10.030 PubMed
Koruth JS, Kuroki K, Kawamura I, Brose R, Viswanathan R, Buck ED, Donskoy E, Neuzil P, Dukkipati SR, Reddy VY. Pulsed field ablation vs radiofrequency ablation: esophageal injury in a novel porcine model. Circ Arrhythm Electrophysiol. 2020;13:e008303. doi: 10.1161/CIRCEP.119.008303 PubMed PMC
Koruth JS, Kuroki K, Kawamura I, Stoffregen WC, Dukkipati SR, Neuzil P, Reddy VY. Focal pulsed field ablation for pulmonary vein isolation and linear atrial lesions: a preclinical assessment of safety and durability. Circ Arrhythm Electrophysiol. 2020;13:e008716. doi: 10.1161/CIRCEP.120.008716 PubMed
Cochet H, Nakatani Y, Sridi-Cheniti S, Cheniti G, Ramirez FD, Nakashima T, Eggert C, Schneider C, Viswanathan R, Derval N, et al. . Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation. Europace. 2021;23:1391–1399. doi: 10.1093/europace/euab090 PubMed PMC
Reddy VY, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, et al. . Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin Electrophysiol. 2018;4:987–995. doi: 10.1016/j.jacep.2018.04.005 PubMed
Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, Sediva L, Chovanec M, Dukkipati SR, Jais P. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol. 2019;74:315–326. doi: 10.1016/j.jacc.2019.04.021 PubMed
Loh P, van Es R, Groen MHA, Neven K, Kassenberg W, Wittkampf FHM, Loh P, Doevendans PA. Pulmonary vein isolation with single pulse irreversible electroporation: a first in human study in 10 patients with atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e008192. doi: 10.1161/CIRCEP.119.008192 PubMed
Reddy VY, Anic A, Koruth J, Petru J, Funasako M, Minami K, Breskovic T, Sikiric I, Dukkipati SR, Kawamura I, et al. . Pulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol. 2020;76:1068–1080. doi: 10.1016/j.jacc.2020.07.007 PubMed
Reddy VY, Anter E, Rackauskas G, Peichl P, Koruth JS, Petru J, Funasako M, Minami K, Natale A, Jais P, et al. . Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol. 2020;13:e008718. doi: 10.1161/CIRCEP.120.008718 PubMed
Reddy VY, Dukkipati SR, Neuzil P, Anic A, Petru J, Funasako M, Cochet H, Minami K, Breskovic T, Sikiric I, et al. . Pulsed field ablation of paroxysmal atrial fibrillation: one-year outcomes of IMPULSE, PEFCAT & PEFCAT II. JACC Clin Electrophysiol. 2021;7:614–627. doi: 10.1016/j.jacep.2021.02.014 PubMed
Verma A, Boersma L, Haines DE, Natale A, Marchlinski FE, Sanders P, Calkins H, Packer DL, Hummel J, Onal B, et al. . First-in-human experience and acute procedural outcomes using a novel pulsed field ablation system: the PULSED AF pilot trial. Circ Arrhythm Electrophysiol. 2022;15:e010168. doi: 10.1161/CIRCEP.121.010168 PubMed PMC
Ekanem E, Reddy VY, Schmidt B, Reichlin T, Neven K, Metzner A, Hansen J, Blaauw Y, Maury P, Arentz T, et al. ; MANIFEST-PF Cooperative. Multi-National Survey on the Methods, Efficacy and Safety on the Post-Approval Clinical Use of Pulsed Field Ablation (MANIFEST-PF). Europace. 2022;24:1256–1266. doi: 10.1093/europace/euac050 PubMed PMC
Bolhassani A, Khavari A, Orafa Z. Electroporation – advantages and drawbacks for delivery of drug, gene and vaccine. In: Sezer AD. eds. Application of Nanotechnology in Drug Delivery. 2014, InTech.
Kotnik T, Rems L, Tarek M, Miklavcic D. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys. 2019;48:63–91. doi: 10.1146/annurev-biophys-052118-115451 PubMed
Harrison RL, Byrne BJ, Tung L. Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett. 1998;435:1–5. doi: 10.1016/s0014-5793(98)00987-9 PubMed
Rosen MR, Brink PR, Cohen IS, Robinson RB. Genes, stem cells and biological pacemakers. Cardiovasc Res. 2004;64:12–23. doi: 10.1016/j.cardiores.2004.05.012 PubMed
Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol. 1997;273:H2817–H2825. doi: 10.1152/ajpheart.1997.273.6.H2817 PubMed
Aguel F, DeBruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol. 1999;10:701–714. doi: 10.1111/j.1540-8167.1999.tb00247.x PubMed
Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circ Res. 1990;66:1190–1203. doi: 10.1161/01.res.66.5.1190 PubMed
De Bruin KA, Krassowska W. Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophys J. 1999;77:1225–1233. doi: 10.1016/S0006-3495(99)76974-2 PubMed PMC
De Bruin KA, Krassowska W. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J. 1999;77:1213–1224. doi: 10.1016/S0006-3495(99)76973-0 PubMed PMC
Nikolski VP, Sambelashvili AT, Krinsky VI, Efimov IR. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am J Physiol Heart Circ Physiol. 2004;286:H412–H418. doi: 10.1152/ajpheart.00689.2003 PubMed
Dubuc M, Roy D, Thibault B, Ducharme A, Tardif JC, Villemaire C, Leung TK, Talajic M. Transvenous catheter ice mapping and cryoablation of the atrioventricular node in dogs. Pacing Clin Electrophysiol. 1999;22:1488–1498. doi: 10.1111/j.1540-8159.1999.tb00353.x PubMed
Skanes AC, Dubuc M, Klein GJ, Thibault B, Krahn AD, Yee R, Roy D, Guerra P, Talajic M. Cryothermal ablation of the slow pathway for the elimination of atrioventricular nodal reentrant tachycardia. Circulation. 2000;102:2856–2860. doi: 10.1161/01.cir.102.23.2856 PubMed