• This record comes from PubMed

The Intricacies of Sprott-B System with Fractional-Order Derivatives: Dynamical Analysis, Synchronization, and Circuit Implementation

. 2023 Sep 17 ; 25 (9) : . [epub] 20230917

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CIT/CNS/2023/RP/008 Centre for Nonlinear Systems, Chennai Institute of 247 Technology, India

Studying simple chaotic systems with fractional-order derivatives improves modeling accuracy, increases complexity, and enhances control capabilities and robustness against noise. This paper investigates the dynamics of the simple Sprott-B chaotic system using fractional-order derivatives. This study involves a comprehensive dynamical analysis conducted through bifurcation diagrams, revealing the presence of coexisting attractors. Additionally, the synchronization behavior of the system is examined for various derivative orders. Finally, the integer-order and fractional-order electronic circuits are implemented to validate the theoretical findings. This research contributes to a deeper understanding of the Sprott-B system and its fractional-order dynamics, with potential applications in diverse fields such as chaos-based secure communications and nonlinear control systems.

See more in PubMed

Sprott J.C. Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific; Singapore: 2010.

Shukla J. Predictability in the midst of chaos: A scientific basis for climate forecasting. Science. 1998;282:728–731. doi: 10.1126/science.282.5389.728. PubMed DOI

Dumitrescu C. Contributions to modeling the behavior of chaotic systems with applicability in economic systems. Intern. Audit. Risk Manag. 2019;56:98–107.

Wilder J. Effect of initial condition sensitivity and chaotic transients on predicting future outbreaks of gypsy moths. Ecol. Modell. 2001;136:49–66. doi: 10.1016/S0304-3800(00)00385-9. DOI

Hsieh D.A. Chaos and nonlinear dynamics: Application to financial markets. J. Financ. 1991;46:1839–1877. doi: 10.1111/j.1540-6261.1991.tb04646.x. DOI

Buizza R. Chaos and weather prediction-A review of recent advances in Numerical Weather Prediction: Ensemble forecasting and adaptive observation targeting. Il Nuovo C. C. 2001;24:273–302.

Amigo J., Kocarev L., Szczepanski J. Theory and practice of chaotic cryptography. Phys. Lett. A. 2007;366:211–216. doi: 10.1016/j.physleta.2007.02.021. DOI

Volos C., Akgul A., Pham V.-T., Stouboulos I., Kyprianidis I. A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 2017;89:1047–1061. doi: 10.1007/s11071-017-3499-9. DOI

Wu H., Zhang Y., Bao H., Zhang Z., Chen M., Xu Q. Initial-offset boosted dynamics in memristor-sine-modulation-based system and its image encryption application. AEU-Int. J. Electron. Commun. 2022;157:154440. doi: 10.1016/j.aeue.2022.154440. DOI

Ma X., Wang C. Hyper-chaotic image encryption system based on N+ 2 ring Joseph algorithm and reversible cellular automata. Multimed. Tools Appl. 2023:1–26. doi: 10.1007/s11042-023-15119-0. DOI

Ma X., Wang C., Qiu W., Yu F. A fast hyperchaotic image encryption scheme. Int. J. Bifurc. Chaos. 2023;33:2350061. doi: 10.1142/S021812742350061X. DOI

Sprott J.C. Simple chaotic systems and circuits. Am. J. Phys. 2000;68:758–763. doi: 10.1119/1.19538. DOI

Lin H., Wang C., Sun Y. A Universal Variable Extension Method for Designing Multiscroll/Wing Chaotic Systems. IEEE Trans. Indust. Electron. 2023;68:12708–12719. doi: 10.1109/TIE.2020.3047012. DOI

Yu F., Zhang W., Xiao X., Yao W., Cai S., Zhang J., Wang C., Li Y. Dynamic analysis and FPGA implementation of a new, simple 5D memristive hyperchaotic Sprott-C system. Mathematics. 2023;11:701. doi: 10.3390/math11030701. DOI

Lin H., Wang C., Du S., Yao W., Sun Y. A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting. Chaos Solitons Fractals. 2023;172:113518. doi: 10.1016/j.chaos.2023.113518. DOI

Fiori S., Di Filippo R. An improved chaotic optimization algorithm applied to a DC electrical motor modeling. Entropy. 2017;19:665. doi: 10.3390/e19120665. DOI

Sabatier J., Agrawal O.P., Machado J.T. Advances in Fractional Calculus. Volume 4 Springer; Berlin/Heidelberg, Germany: 2007.

Khennaoui A.-A., Ouannas A., Bendoukha S., Grassi G., Lozi R.P., Pham V.-T. On fractional–order discrete–time systems: Chaos, stabilization and synchronization. Chaos Solitons Fractals. 2019;119:150–162. doi: 10.1016/j.chaos.2018.12.019. DOI

Kumar D., Baleanu D. Fractional Calculus and Its Applications in Physics. Volume 7. Frontiers Media SA; Lausanne, Switzerland: 2019. p. 81.

Gutierrez R.E., Rosário J.M., Tenreiro Machado J. Fractional order calculus: Basic concepts and engineering applications. Math. Prob. Engin. 2010;2010:375858. doi: 10.1155/2010/375858. DOI

Zhang L., Sun K., He S., Wang H., Xu Y. Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings. Euro. Phys. J. Plus. 2017;132:31. doi: 10.1140/epjp/i2017-11310-7. DOI

Gu S., He S., Wang H., Du B. Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fractals. 2021;143:110613. doi: 10.1016/j.chaos.2020.110613. DOI

Birs I., Muresan C., Nascu I., Ionescu C. A survey of recent advances in fractional order control for time delay systems. IEEE Access. 2019;7:30951–30965. doi: 10.1109/ACCESS.2019.2902567. DOI

Azar A.T., Vaidyanathan S., Ouannas A. Fractional Order Control and Synchronization of Chaotic Systems. Volume 688 Springer; Berlin/Heidelberg, Germany: 2017.

Yan B., Parastesh F., He S., Rajagopal K., Jafari S., Perc M. Interlayer and intralayer synchronization in multiplex fractional-order neuronal networks. Fractals. 2022;30:2240194. doi: 10.1142/S0218348X22401946. DOI

Zhao J., Wang S., Chang Y., Li X. A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. 2015;80:1721–1729. doi: 10.1007/s11071-015-1911-x. DOI

Yao Z., Sun K., He S. Firing patterns in a fractional-order FithzHugh–Nagumo neuron model. Nonlinear Dyn. 2022;110:1807–1822. doi: 10.1007/s11071-022-07690-2. DOI

Rajagopal K., Karthikeyan A., Jafari S., Parastesh F., Volos C., Hussain I. Wave propagation and spiral wave formation in a Hindmarsh–Rose neuron model with fractional-order threshold memristor synaps. Int. J. Mod. Phys. B. 2020;34:2050157. doi: 10.1142/S021797922050157X. DOI

Nosrati K., Shafiee M. Fractional-order singular logistic map: Stability, bifurcation and chaos analysis. Chaos Solitons Fractals. 2018;115:224–238. doi: 10.1016/j.chaos.2018.08.023. DOI

Nosrati K., Belikov J., Tepljakov A., Petlenkov E. Image Encryption Using Fractional Singular Chaotic Systems: An Extended Kalman Filtering Approach; Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET); Prague, Czech Republic. 20–22 July 2022; pp. 1–6.

Nosrati K., Belikov J., Tepljakov A., Petlenkov E. Extended fractional singular kalman filter. Appl. Math. Comput. 2023;448:127950. doi: 10.1016/j.amc.2023.127950. DOI

Wei Y.-Q., Liu D.-Y., Boutat D., Chen Y.-M. An improved pseudo-state estimator for a class of commensurate fractional order linear systems based on fractional order modulating functions. Syst. Control Lett. 2018;118:29–34. doi: 10.1016/j.sysconle.2018.05.011. DOI

Sprott J.C., Thio W.J.-C. Elegant Circuits: Simple Chaotic Oscillators. World Scientific; Singapore: 2022.

Petrzela J. Chaos in analog electronic circuits: Comprehensive review, solved problems, open topics and small example. Mathematics. 2022;10:4108. doi: 10.3390/math10214108. DOI

Bao B., Xu L., Wang N., Bao H., Xu Q., Chen M. Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles. AEU-Int. J. Electron. Commun. 2018;94:26–35. doi: 10.1016/j.aeue.2018.06.042. DOI

Bao B., Wang N., Chen M., Xu Q., Wang J. Inductor-free simplified Chua’s circuit only using two-op-amp-based realization. Nonlinear Dyn. 2016;84:511–525. doi: 10.1007/s11071-015-2503-5. DOI

Ogorzalek M.J. Chaos and Complexity in Nonlinear Electronic Circuits. Volume 22 World Scientific; Singapore: 1997.

Gokyildirim A. Circuit Realization of the Fractional-Order Sprott K Chaotic System with Standard Components. Fractal Fract. 2023;7:470. doi: 10.3390/fractalfract7060470. DOI

Ahmad W.M., Sprott J.C. Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals. 2003;16:339–351. doi: 10.1016/S0960-0779(02)00438-1. DOI

Sprott J.C. Some simple chaotic flows. Phys. Rev. E. 1994;50:R647. doi: 10.1103/PhysRevE.50.R647. PubMed DOI

Diethelm K., Freed A.D. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forsch. Und Wiss. Rechn. 1998;1999:57–71.

Petrzela J. Fractional-order chaotic memory with wideband constant phase elements. Entropy. 2020;22:422. doi: 10.3390/e22040422. PubMed DOI PMC

Sene N. Study of a fractional-order chaotic system represented by the Caputo operator. Complexity. 2021;2021:5534872. doi: 10.1155/2021/5534872. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...