State of the art on the separation and purification of proteins by magnetic nanoparticles

. 2023 Oct 04 ; 21 (1) : 363. [epub] 20231004

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37794459
Odkazy

PubMed 37794459
PubMed Central PMC10548632
DOI 10.1186/s12951-023-02123-7
PII: 10.1186/s12951-023-02123-7
Knihovny.cz E-zdroje

The need for excellent, affordable, rapid, reusable and biocompatible protein purification techniques is justified based on the roles of proteins as key biomacromolecules. Magnetic nanomaterials nowadays have become the subject of discussion in proteomics, drug delivery, and gene sensing due to their various abilities including rapid separation, superparamagnetism, and biocompatibility. These nanomaterials also referred to as magnetic nanoparticles (MNPs) serve as excellent options for traditional protein separation and analytical methods because they have a larger surface area per volume. From ionic metals to carbon-based materials, MNPs are easily functionalized by modifying their surface to precisely recognize and bind proteins. This review excavates state-of-the-art MNPs and their functionalizing agents, as efficient protein separation and purification techniques, including ionic metals, polymers, biomolecules, antibodies, and graphene. The MNPs could be reused and efficaciously manipulated with these nanomaterials leading to highly improved efficiency, adsorption, desorption, and purity rate. We also discuss the binding and selectivity parameters of the MNPs, as well as their future outlook. It is concluded that parameters like charge, size, core-shell, lipophilicity, lipophobicity, and surface energy of the MNPs are crucial when considering protein selectivity, chelation, separation, and purity.

Zobrazit více v PubMed

Alves MHME, Nascimento GA, Cabrera MP, da Cruz Silvério SI, Nobre C, Teixeira JA, de Carvalho Júnior LB. Trypsin purification using magnetic particles of azocasein-iron composite. Food Chem. 2017;226:75–78. PubMed

Amiri S, Mehrnia MR, Roudsari FP. Enhancing purification efficiency of affinity functionalized composite agarose micro beads using Fe3O4 nanoparticles. J Chromatogr B. 2017;1041:27–36. PubMed

Asgharnasl S, Eivazzadeh-Keihan R, Radinekiyan F, Maleki A. Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. Int J Biol Macromol. 2020;144:29–46. PubMed

Aygar G, Kaya M, Özkan N, Kocabıyık S, Volkan M. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins. J Phys Chem Solids. 2015;87:64–71.

Bahrami A, Hejazi P. Electrostatic immobilization of pectinase on negatively charged AOT-Fe3O4 nanoparticles. J Mol Catal B Enzym. 2013;93:1–7.

Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano. 2007;1(4):293–298. PubMed

Bhosale SV, Kanhe NS, Bhoraskar SV, Bhat SK, Bulakhe RN, Shim JJ, Mathe VL. Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption. J Mater Sci Mater Med. 2015;26(8):1–15. PubMed

Bloemen M, Vanpraet L, Ceulemans M, Parac-Vogt TN, Clays K, Geukens N, et al. Selective protein purification by PEG–IDA-functionalized iron oxide nanoparticles. RSC Adv. 2015;5(82):66549–66553.

Bodnar ED, Perreault H. Qualitative and quantitative assessment on the use of magnetic nanoparticles for glycopeptide enrichment. Anal Chem. 2013;85(22):10895–10903. PubMed

Borlido L, Moura L, Azevedo AM, Roque AC, Aires-Barros MR, Farinha JPS. Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnol J. 2013;8(6):709–717. PubMed

Bornhorst JA, Falke JJ. Methods in enzymology. USA: Academic Press; 2000. Purification of proteins using polyhistidine affinity tags; pp. 245–254. PubMed PMC

Bucak S, Jones DA, Laibinis PE, Hatton TA. Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog. 2003;19(2):477–484. PubMed

Busayapongchai P, Siri S. Estrogenic receptor-functionalized magnetite nanoparticles for rapid separation of phytoestrogens in plant extracts. Appl Biochem Biotechnol. 2017;181(3):925–938. PubMed

Büyükköroğlu G, Dora DD, Özdemir F, Hızel C. Omics technologies and bio-engineering. USA: Academic Press; 2018. Techniques for protein analysis; pp. 317–351.

Cao N, Zou X, Huang Y, Zhao Y. Preparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteins. Mater Lett. 2015;144:161–164.

Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia. 2019;82(8):1251–1274.

Casalini S, Dumitru AC, Leonardi F, Bortolotti CA, Herruzo ET, Campana A, et al. Multiscale sensing of antibody–antigen interactions by organic transistors and single-molecule force spectroscopy. ACS Nano. 2015;9(5):5051–5062. PubMed

Chang M, Chang YJ, Chao PY, Yu Q. Exosome purification based on PEG-coated Fe3O4 nanoparticles. PLoS ONE. 2018;13(6):e0199438. PubMed PMC

Chang M, Qin Q, Wang B, Xia T, Lv W, Sun X, et al. Carboxymethylated polyethylenimine modified magnetic nanoparticles specifically for purification of His-tagged protein. J Sep Sci. 2019;42(3):744–753. PubMed

Chen F, Zhao W, Zhang J, Kong J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys Chem Chem Phys. 2016;18(2):718–725. PubMed

Chen Q, Hu X, Zhang DD, Chen XW, Wang JH. Selective isolation of myosin Subfragment-1 with a DNA-Polyoxovanadate bioconjugate. Bioconjug Chem. 2017;28(12):2976–2984. PubMed

Chen Y, Jiang P, Liu S, Zhao H, Cui Y, Qin S. Purification of 6× His-tagged phycobiliprotein using zinc-decorated silica-coated magnetic nanoparticles. J Chromatogr B. 2011;879(13–14):993–997. PubMed

Cheng F, Qian-Cheng F, Wei H, Xian-Ming Z, Qing W. Preparation and characterization of PEGylated thiophilic nanoparticles for rapid antibody separation. Chin J Anal Chem. 2018;46(12):1953–1960.

Cheng G, Yu X, Zhou MD, Zheng SY. Preparation of magnetic graphene composites with hierarchical structure for selective capture of phosphopeptides. J Mater Chem B. 2014;2(29):4711–4719. PubMed PMC

Çimen D, Bereli N, Denizli A. Metal-chelated magnetic nanoparticles for protein C purification. Sep Sci Technol. 2020;55(13):2259–2268.

Cong H, Xu X, Yu B, Yang Z, Zhang X. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation. Sci Rep. 2016;6(1):1–10. PubMed PMC

Cordova K, Michiels C, Verachtert H, Derdelinckx G. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta. 2016;160:761–767. PubMed

Davis RH. Membrane handbook. Boston: Springer; 1992. Theory for crossflow microfiltration; pp. 480–505.

Ding C, Ma X, Yao X, Jia L. Facile synthesis of copper (II)-decorated magnetic particles for selective removal of hemoglobin from blood samples. J Chromatogr A. 2015;1424:18–26. PubMed

Du X, He Q, Zhang L, Liu C, Zhu J, Kuang B, et al. Selective and cleavable extraction of sialo-glycoproteins by disulfide-linked amino-oxy-functionalized Fe3O4 magnetic nanoparticles. Bioconjugate Chem. 2017;28(10):2514–2517. PubMed

Eivazzadeh-Keihan R, Maleki A, De La Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, et al. Carbon-based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res. 2019;18:185–201. PubMed PMC

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, de la Guardia M, Hejazi M, Sohrabi H, et al. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Trends Anal Chem. 2018;103:184–197.

Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, Madanchi H. Chitosan hydrogel/silk fibroin/Mg (OH) 2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci Rep. 2021;11(1):1–13. PubMed PMC

Eivazzadeh-Keihan R, Taheri-Ledari R, Khosropour N, Dalvand S, Maleki A, Mousavi-Khoshdel SM, Sohrabi H. Fe3O4/GO@ melamine-ZnO nanocomposite: a promising versatile tool for organic catalysis and electrical capacitance. Colloids Surf A. 2020;587:124335.

Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Ghafuri H. Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols. Mol Catal. 2020;492:111037.

Farzi-Khajeh H, Safa KD, Dastmalchi S. Preparation of p-aminophenol modified superparamagnetic iron oxide nanoparticles for purification of α-amylase from the bovine milk. J Chromatogr B. 2017;1068:210–217. PubMed

Feczkó T, Muskotál A, Gál L, Szépvölgyi J, Sebestyén A, Vonderviszt F. Synthesis of Ni–Zn ferrite nanoparticles in a radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins. J Nanopart Res. 2008;10(1):227–232.

Feng G, Hu D, Yang L, Cui Y, Cui XA, Li H. Immobilized-metal affinity chromatography adsorbent with paramagnetism and its application in purification of histidine-tagged proteins. Sep Purif Technol. 2010;74(2):253–260.

Feng X, Deng C, Gao M, Zhang X. Facile and easily popularized synthesis of l-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Anal Bioanal Chem. 2018;410(3):989–998. PubMed

Feyzioğlu Demir E, ÖztürkAtay N, Koruyucu M, Kök G, Salman Y, Akgöl S. Mannose based polymeric nanoparticles for lectin separation. Sep Sci Technol. 2018;53(15):2365–2375.

Fields C, Li P, O'Mahony JJ, Lee GU. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation. Biotechnol Bioeng. 2016;113(1):11–25. PubMed

Fraga García P, Freiherr von Roman M, Reinlein S, Wolf M, Berensmeier S. Impact of nanoparticle aggregation on protein recovery through a pentadentate chelate ligand on magnetic carriers. ACS Appl Mater Interfaces. 2014;6(16):13607–13616. PubMed

Gädke J, Kleinfeldt L, Schubert C, Rohde M, Biedendieck R, Garnweitner G, Krull R. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles. J Biotechnol. 2017;242:55–63. PubMed

Gädke J, Thies JW, Kleinfeldt L, Kalinin A, Starke G, Lakowitz A, et al. Integrated in situ-purification of recombinant proteins from Bacillus megaterium cultivation using SPION in stirred tank reactors. Biochem Eng J. 2017;126:58–67.

Gagnon P, Toh P, Lee J. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol. J Chromatogr A. 2014;1324:171–180. PubMed

Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective capture and purification of micrornas and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9(1):1–10. PubMed PMC

Ghanbari Adivi F, Hashemi P. Ultrafine agarose-coated superparamagnetic iron oxide nanoparticles (AC-SPIONs): a promising sorbent for drug delivery applications. J Iran Chem Soc. 2018;15(5):1145–1152.

Gonzalez JS, Nicolás P, Ferreira ML, Avena M, Lassalle VL, Alvarez VA. Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. Polym Int. 2014;63(2):258–265.

Grass RN, Athanassiou EK, Stark WJ. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed. 2007;46(26):4909–4912. PubMed

Guo H, Sun H, Su Z, Hu S, Wang X. Fe3O4@ PAM@ NTA-Ni2+ magnetic composite nanoparticles for highly specific separation of his-tagged proteins. J Wuhan Univ Technol Mater Sci Ed. 2018;33(3):559–565.

Guo H, Wang W, Zhou F. Fast and highly selective separation of His-tagged proteins by Ni2+-carrying magnetic core–shell nanoparticles. Appl Phys A. 2019;125(5):1–10.

Hasan N, Guo Z, Wu HF. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Anal Bioanal Chem. 2016;408(23):6269–6281. PubMed

Hou X, Zhao C, Tian Y, Dou S, Zhang X, Zhao J. Preparation of functionalized Fe3O4@ SiO2 magnetic nanoparticles for monoclonal antibody purification. Chem Res Chin Univ. 2016;32(6):889–894.

Hwang L, Ayaz-Guner S, Gregorich ZR, Cai W, Valeja SG, Jin S, Ge Y. Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J Am Chem Soc. 2015;137(7):2432–2435. PubMed PMC

Jain P, Sun L, Dai J, Baker GL, Bruening ML. High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromol. 2007;8(10):3102–3107. PubMed

Jauregui R, Srinivasan S, Vojtech LN, Gammill HS, Chiu DT, Hladik F, et al. Temperature-responsive magnetic nanoparticles for enabling affinity separation of extracellular vesicles. ACS Appl Mater Interf. 2018;10(40):33847–33856. PubMed PMC

Jiang D, Li X, Ma J, Jia Q. Development of Gd3+-immobilized glutathione-coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. Talanta. 2018;180:368–375. PubMed

Jiang D, Song N, Li X, Ma J, Jia Q. Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS. Proteomics. 2017;17(17–18):1700213. PubMed

Jiao F, Gao F, Wang H, Deng Y, Zhang Y, Qian X, Zhang Y. Polymeric hydrophilic ionic liquids used to modify magnetic nanoparticles for the highly selective enrichment of N-linked glycopeptides. Sci Rep. 2017;7(1):1–11. PubMed PMC

Jose L, Lee C, Hwang A, Park JH, Song JK, Paik HJ. Magnetically steerable Fe3O4@ Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein. Eur Polymer J. 2019;112:524–529.

Kim S, Sung D, Chang JH. Highly efficient antibody purification with controlled orientation of protein A on magnetic nanoparticles. MedChemComm. 2018;9(1):108–112. PubMed PMC

Kupcik R, Rehulka P, Bilkova Z, Sopha H, Macak JM. New interface for purification of proteins: one-dimensional TiO2 nanotubes decorated by Fe3O4 nanoparticles. ACS Appl Mater Interfaces. 2017;9(34):28233–28242. PubMed

Kurt BZ, Uckaya F, Durmus Z. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int J Biol Macromol. 2017;96:149–160. PubMed

Leos JZ, Zydney AL. Microfiltration and ultrafiltration: principles and applications. Routledge; 2017.

Li J, Chen M, Gao Z, Du J, Yang W, Yin M. Effective approach towards Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for high efficient protein separation. Colloids Surf B. 2016;146:468–474. PubMed

Liao HY, Tsai FJ, Lai CC, Tseng MC, Hsu CY, Chen CJ. Rapid fabrication of functionalized plates for peptides, glycopeptides and protein purification and mass spectrometry analysis. Analyst. 2016;141(7):2183–2190. PubMed

Lim J, Choi M, Lee H, Kim YH, Han JY, Lee ES, Cho Y. Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol. 2019;17(1):1–12. PubMed PMC

Liu JW, Yang T, Ma LY, Chen XW, Wang JH. Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins. Nanotechnology. 2013;24(50):505704. PubMed

Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M. Protein A-and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta. 2019;194:664–672. PubMed

Liu Y, Wang Y, Yan M, Huang J. Selective removal of hemoglobin from blood using hierarchical copper shells anchored to magnetic nanoparticles. BioMed Res Int. 2017;2017(2017):1–11. PubMed PMC

Liu Z, Fan S, Liu H, Yu J, Qiao R, Zhou M, et al. Enhanced detection of low-abundance human plasma proteins by integrating polyethylene glycol fractionation and immunoaffinity depletion. PLoS ONE. 2016;11(11):e0166306. PubMed PMC

Liu Z, Li M, Li Z, Pu F, Ren J, Qu X. Easy access to selective binding and recyclable separation of histidine-tagged proteins using Ni2+-decorated superparamagnetic nanoparticles. Nano Res. 2012;5(7):450–459.

Lu J, Luan J, Li Y, He X, Chen L, Zhang Y. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A. 2020;1615:460754. PubMed

Mir L, Michaels SL, Goel V, Kaiser R. Membrane handbook. Boston: Springer; 1992. Crossflow microfiltration: applications, design, and cost; pp. 571–594.

Mirahmadi-Zare SZ, Aboutalebi F, Allafchian M, Pirjamali L, Nasr-Esfahani MH. Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins. Protein Expr Purif. 2018;143:71–76. PubMed

Mirahmadi-Zare SZ, Allafchian A, Aboutalebi F, Shojaei P, Khazaie Y, Dormiani K, et al. Super magnetic nanoparticles NiFe2O4, coated with aluminum–nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins. Protein Expr Purif. 2016;121:52–60. PubMed

Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 2011;212(1):80–88.

Nash MA, Yager P, Hoffman AS, Stayton PS. Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers. Bioconjug Chem. 2010;21(12):2197–2204. PubMed PMC

Nehilla BJ, Hill JJ, Srinivasan S, Chen YC, Schulte TH, Stayton PS, Lai JJ. A stimuli-responsive, binary reagent system for rapid isolation of protein biomarkers. Anal Chem. 2016;88(21):10404–10410. PubMed PMC

Neto JMWD, de Albuquerque Wanderley MC, de Albuquerque Lima C, Porto ALF. Single step purification via magnetic nanoparticles of new broad pH active protease from Penicillium aurantiogriseum. Protein Expr Purif. 2018;147:22–28. PubMed

Ni Q, Chen B, Dong S, Tian L, Bai Q. Preparation of core–shell structure Fe3O4@ SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for his-tag protein purification. Biomed Chromatogr. 2016;30(4):566–573. PubMed

Oz Y, Abdouni Y, Yilmaz G, Becer CR, Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polym Chem. 2019;10(24):3351–3361.

Pan D, Zhang H, Fan T, Chen J, Duan X. Nearly monodispersed core–shell structural Fe3O4@ DFUR–LDH submicro particles for magnetically controlled drug delivery and release. Chem Commun. 2011;47(3):908–910. PubMed

Pan SD, Chen XH, Li XP, Cai MQ, Shen HY, Zhao YG, Jin MC. In situ controllable synthesis of graphene oxide-based ternary magnetic molecularly imprinted polymer hybrid for efficient enrichment and detection of eight microcystins. J Mater Chem A. 2015;3(45):23042–23052.

Parisien A, Al-Zarka F, Hussack G, Baranova EA, Thibault J, Lan CQ. Nickel nanoparticles synthesized by a modified polyol method for the purification of histidine-tagged single-domain antibody ToxA5.1. J Mater Res. 2012;27(22):2884–2890.

Pashazadeh-Panahi P, Hasanzadeh M, Eivazzadeh-Keihan R. A novel optical probe based on d-penicillamine-functionalized graphene quantum dots: preparation and application as signal amplification element to minoring of ions in human biofluid. J Mol Recognit. 2020;33(5):e2828. PubMed

Paulus AS, Heinzler R, Ooi HW, Franzreb M. Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl Mater Interfaces. 2015;7(26):14279–14287. PubMed

Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Samperi R, Ventura S, Laganà A. Phosphopeptide enrichment: development of magnetic solid phase extraction method based on polydopamine coating and Ti4+-IMAC. Anal Chim Acta. 2016;909:67–74. PubMed

Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–582. PubMed

Powell CD, Atkinson AJ, Ma Y, Marcos-Hernandez M, Villagran D, Westerhoff P, Wong MS. Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. J Nanopart Res. 2020;22:1–11. PubMed

Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem. 2018;8(2):123–137.

Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Coll Interface Sci. 2011;162(1–2):87–106. PubMed

Rashid Z, Ghahremanzadeh R, Nejadmoghaddam MR, Nazari M, Shokri MR, Naeimi H, Zarnani AH. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification. J Chromatogr A. 2017;1490:47–53. PubMed

Rashid Z, Naeimi H, Zarnani AH, Nazari M, Nejadmoghaddam MR, Ghahremanzadeh R. Fast and highly efficient purification of 6× histidine-tagged recombinant proteins by Ni-decorated MnFe2O4@ SiO2@ NH2@ 2AB as novel and efficient affinity adsorbent magnetic nanoparticles. RSC Adv. 2016;6(43):36840–36848.

Sadeghi M, Hanifpour F, Taheri R, Javadian H, Ghasemi M. Comparison of using formaldehyde and carboxy methyl chitosan in preparation of Fe3O4 superparamagnetic nanoparticles-chitosan hydrogel network: sorption behavior toward bovine serum albumin. Process Saf Environ Prot. 2016;102:119–128.

Sahu SK, Chakrabarty A, Bhattacharya D, Ghosh SK, Pramanik P. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins. J Nanopart Res. 2011;13(6):2475–2484.

Salimi K, Usta DD, Koçer İ, Celik E, Tuncel A. Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G. Int J Biol Macromol. 2018;111:178–185. PubMed

Saravanakumar T, Palvannan T, Kim DH, Park SM. Optimized immobilization of peracetic acid producing recombinant acetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochem. 2014;49(11):1920–1928.

Scheich C, Sievert V, Büssow K. An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. BMC Biotechnol. 2003;3(1):1–8. PubMed PMC

Schneider EM, Zeltner M, Zlateski V, Grass RN, Stark WJ. Click and release: fluoride cleavable linker for mild bioorthogonal separation. Chem Commun. 2016;52(5):938–941. PubMed

Shi L, Tang Y, Hao Y, He G, Gao R, Tang X. Selective adsorption of protein by a high-efficiency Cu2+-cooperated magnetic imprinted nanomaterial. J Sep Sci. 2016;39(14):2876–2883. PubMed

Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B. Methods in enzymology. USA: Academic Press; 2015. Purification of His-tagged proteins; pp. 1–15. PubMed

Sui Y, Cui Y, Nie Y, Xia GM, Sun GX, Han JT. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Colloids Surf B. 2012;93:24–28. PubMed

Sun S, Ma M, Qiu N, Huang X, Cai Z, Huang Q, Hu X. Affinity adsorption and separation behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin. Colloids Surf B. 2011;88(1):246–253. PubMed

Ta DT, Vanella R, Nash MA. Magnetic separation of elastin-like polypeptide receptors for enrichment of cellular and molecular targets. Nano Lett. 2017;17(12):7932–7939. PubMed

Taheri-Ledari R, Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Shalan AE. Facile route to synthesize Fe3O4@ acacia–SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv. 2020;10(66):40055–40067. PubMed PMC

Tarhan T, Tural B, Tural S, Topal G. Enantioseparation of mandelic acid enantiomers with magnetic nano-sorbent modified by a chiral selector. Chirality. 2015;27(11):835–842. PubMed

Tural B, Tural S, Ertaş E, Yalınkılıç İ, Demir AS. Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. J Mol Catal B Enzym. 2013;95:41–47.

van Reis R, Leonard LC, Hsu CC, Builder SE. Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol Bioeng. 1991;38(4):413–422. PubMed

Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304. PubMed PMC

Wang K, Ding Y, Hong X, Liu Y. An infrared IgG immunoassay based on the use of a nanocomposite consisting of silica coated Fe3O4 superparticles. Microchim Acta. 2019;186(2):1–8. PubMed

Wang Q, He XM, Chen X, Zhu GT, Wang RQ, Feng YQ. Pyridoxal 5′-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A. 2017;1499:30–37. PubMed

Wang W, Wang DI, Li Z. Facile fabrication of recyclable and active nanobiocatalyst: purification and immobilization of enzyme in one pot with Ni-NTA functionalized magnetic nanoparticle. Chem Commun. 2011;47(28):8115–8117. PubMed

Wang Y, Wang G, Xiao Y, Yang Y, Tang R. Yolk–shell nanostructured Fe3O4@ NiSiO3 for selective affinity and magnetic separation of His-tagged proteins. ACS Appl Mater Interfaces. 2014;6(21):19092–19099. PubMed

Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal Chem. 2014;59:50–58.

Witte K, Müller K, Grüttner C, Westphal F, Johansson C. Particle size-and concentration-dependent separation of magnetic nanoparticles. J Magn Magn Mater. 2017;427:320–324.

Wu R, Li L, Deng C. Highly efficient and selective enrichment of glycopeptides using easily synthesized magG/PDA/Au/l-Cys composites. Proteomics. 2016;16(9):1311–1320. PubMed

Xie Y, Deng C, Li Y. Designed synthesis of ultra-hydrophilic sulfo-functionalized metal–organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides. J Chromatogr A. 2017;1508:1–6. PubMed

Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules. 2014;19(12):21506–21528. PubMed PMC

Xu J, Liu L, He J, Ma S, Li S, Wang Z, et al. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. J Nanobiotechnol. 2019;17(1):1–11. PubMed PMC

Xu X, Chen H, Cao Y, Lin Y, Liu JA. A novel fluorescent nanoparticle for sensitive detection of Cry1Ab protein in vitro and in vivo. J Fluoresc. 2018;28(4):863–869. PubMed

Yang J, Ni K, Wei D, Ren Y. One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@ polydopamine magnetic nanoparticles. Biotechnol Bioprocess Eng. 2015;20(5):901–907.

Yao S, Yan X, Zhao Y, Li B, Sun L. Selective binding and magnetic separation of histidine-tagged proteins using Ni2+-decorated Fe3O4/hydroxyapatite composite nanoparticles. Mater Lett. 2014;126:97–100.

Zhai R, Jiao F, Feng D, Hao F, Li J, Li N, et al. Preparation of mixed lanthanides-immobilized magnetic nanoparticles for selective enrichment and identification of phosphopeptides by MS. Electrophoresis. 2014;35(24):3470–3478. PubMed

Zhang J, Sun J, Liu Y, Li J, Su Y, Xia W, Yang Y. Separation and purification of phosvitin phosphopeptides using immobilized metal affinity nanoparticles. J Chromatogr B. 2012;893:121–126. PubMed

Zhang M, Qiao J, Qi L. Dual-functional polymer-modified magnetic nanoparticles for isolation of lysozyme. Anal Chim Acta. 2018;1035:70–76. PubMed

Zhang Y, Wang H, Lu H. Sequential selective enrichment of phosphopeptides and glycopeptides using amine-functionalized magnetic nanoparticles. Mol BioSyst. 2013;9(3):492–500. PubMed

Zhang Y, Xing LG, Chen XW, Wang JH. Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl Mater Interfaces. 2015;7(9):5116–5123. PubMed

Zhang Z, Yang X, Chen X, Zhang M, Luo L, Peng M, Yao S. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation. Anal Bioanal Chem. 2011;401(9):2855–2863. PubMed

Zhao L, Wu RA, Han G, Zhou H, Ren L, Tian R, Zou H. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. J Am Soc Mass Spectrom. 2011;19(8):1176–1186. PubMed

Zhou Q, Lu Z, Cao X. Heterostructured magnetite-titanate nanosheets for prompt charge selective binding and magnetic separation of mixed proteins. J Colloid Interface Sci. 2014;415:48–56. PubMed

Zhou Z, Irudayaraj J. A native chromatin extraction method based on salicylic acid coated magnetic nanoparticles and characterization of chromatin. Analyst. 2015;140(3):938–944. PubMed

Zhu M, Liu W, Liu H, Liao Y, Wei J, Zhou X, Xing D. Construction of Fe3O4/vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing. ACS Appl Mater Interfaces. 2015;7(23):12873–12881. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...