ERS/ESTS/ESTRO/ESR/ESTI/EFOMP statement on management of incidental findings from low dose CT screening for lung cancer

. 2023 Oct 04 ; 64 (4) : .

Jazyk angličtina Země Německo Médium print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37804174

Grantová podpora
TF-2019-14 European Respiratory Society

BACKGROUND: Screening for lung cancer with low radiation dose computed tomography has a strong evidence base, is being introduced in several European countries and is recommended as a new targeted cancer screening programme. The imperative now is to ensure that implementation follows an evidence-based process that will ensure clinical and cost effectiveness. This European Respiratory Society (ERS) task force was formed to provide an expert consensus for the management of incidental findings which can be adapted and followed during implementation. METHODS: A multi-European society collaborative group was convened. 23 topics were identified, primarily from an ERS statement on lung cancer screening, and a systematic review of the literature was conducted according to ERS standards. Initial review of abstracts was completed and full text was provided to members of the group for each topic. Sections were edited and the final document approved by all members and the ERS Science Council. RESULTS: Nine topics considered most important and frequent were reviewed as standalone topics (interstitial lung abnormalities, emphysema, bronchiectasis, consolidation, coronary calcification, aortic valve disease, mediastinal mass, mediastinal lymph nodes and thyroid abnormalities). Other topics considered of lower importance or infrequent were grouped into generic categories, suitable for general statements. CONCLUSIONS: This European collaborative group has produced an incidental findings statement that can be followed during lung cancer screening. It will ensure that an evidence-based approach is used for reporting and managing incidental findings, which will mean that harms are minimised and any programme is as cost-effective as possible.

Azienda Ospedaliero Universitaria Maggiore della Carità di Novara Novara Italy

Bayer AG Research and Development Pharmaceuticals Radiology Berlin Germany

Charles University 1st Faculty of Medicine Department of Tuberculosis and Respiratory Diseases Prague Czech Republic

Christian Albrechts Universität zu Kiel Faculty of Medicine Kiel Germany

Cochin Hospital APHP Radiology Department Paris France

European Lung Foundation Tipton UK

Galway Clinic Doughiska Galway Ireland

German Center for Lung Research DZL Translational Lung Research Center TLRC Heidelberg Germany

HELIOS Klinikum Emil von Behring GmbH Lungenklinik Heckeshorn Berlin Germany

Humanitas Research Hospital Division of Thoracic and General Surgery Rozzano Italy

Inselspital Universitatsspital Bern Radiation Oncology Bern Switzerland

Institute for Evidence in Medicine Medical Center University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany

Institute of Tuberculosis and Lung Diseases Warsaw Genetics and Clinical Immunology Warsaw Poland

Kantonsspital Sankt Gallen Radiation Oncology Sankt Gallen Switzerland

Kliniken Maria Hilf GmbH Monchengladbach Nordrhein Westfalen Germany

Maastricht University Medical Centre Department of Radiation Oncology GROW School for Oncology and Developmental Biology Limburg The Netherlands

Medical Centre Leeuwarden Department of Respiratory Medicine Leeuwarden The Netherlands

Medical University of Vienna Department of Biomedical Imaging and Image guided Therapy Vienna Austria

National Koranyi Institute of Pulmonology Department of Radiology Budapest Hungary

Nottingham University Hospitals NHS Trust Department of Respiratory Medicine Nottingham UK

Nottingham University Hospitals NHS Trust Nottingham UK

Radboud University Nijmegen Medical Center Department of Radiology Nijmegen The Netherlands

Royal Brompton and Harefield NHS Foundation Trust Radiology London UK

Sotiria General Hospital of Chest Diseases of Athens 7th Respiratory Medicine Department Athens Greece

Sotiria General Hospital of Chest Diseases of Athens Respiratory Medicine Athens Greece

St James's University Hospital Department of Thoracic Surgery Leeds UK

UMCG Groningen The Netherlands

Universitaire Ziekenhuizen Leuven Radiology Leuven Belgium

UniversitatsKlinikum Heidelberg Heidelberg Germany

Université de Paris Paris France

University College Dublin School of Medicine Histopathology Dublin Ireland

University Hospital Antwerp Radiology Edegem Belgium

University Hospital of Salamanca Thoracic Surgery Salamanca Spain

University Hospitals Leuven Thoracic Surgery Leuven Belgium

University of Groningen University Medical Center Groningen Department of Pulmonary Diseases Groningen The Netherlands

University of Heidelberg Diagnostic and Interventional Radiology Heidelberg Germany

University of Latvia Faculty of Medicine Riga Latvia

University of Nottingham Faculty of Medicine and Health Sciences Nottingham UK

UZ Antwerpen MOCA Edegem Belgium

Zobrazit více v PubMed

Wait S, Alvarez-Rosete A, Osama T, et al.Implementing lung cancer screening in Europe: taking a systems approach. JTO Clin Res Rep 2022; 3: 100329. doi:10.1016%2Fj.jtocrr.2022.100329 PubMed PMC

Morgan L, Choi H, Reid M, et al.Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening. Ann Am Thorac Soc 2017; 14: 1450–1456. doi:10.1513/AnnalsATS.201612-1023OC PubMed DOI

Shemesh J, Henschke CI, Farooqi A, et al.Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer. Clin Imaging 2006; 30: 181–185. doi:10.1016/j.clinimag.2005.11.002 PubMed DOI

Bartlett EC, Belsey J, Derbyshire J, et al.Implications of incidental findings from lung screening for primary care: data from a UK pilot. NPJ Prim Care Respir Med 2021; 31: 36. doi:10.1038/s41533-021-00246-8 PubMed DOI PMC

American College of Radiology. ACR Lung Cancer Screening CT Incidental Findings. Quick Reference Guide. Date last accessed: 11 August 2022. www.acr.org/-/media/ACR/Files/Lung-Cancer-Screening-Resources/LCS-Incidental-Findings-Quick-Guide.pdf

National Health Service England. Targeted Screening for Lung Cancer with Low Radiation Dose Computed Tomography. Quality Assurance Standards prepared for the Targeted Lung Health Checks Programme. Date last accessed: 4 June 2023. www.england.nhs.uk/publication/targeted-screening-for-lung-cancer/

Henderson LM, Chiles C, Perera P, et al.Variability in reporting of incidental findings detected on lung cancer screening. Ann Am Thorac Soc 2023; 20: 617–620. doi:10.1513/AnnalsATS.202206-486RL PubMed DOI PMC

Kauczor HU, Baird AM, Blum TG, et al.ESR/ERS statement paper on lung cancer screening. Eur Respir J 2020; 55: 1900506. doi:10.1183/13993003.00506-2019 PubMed DOI

Moher D, Liberati A, Tetzlaff J, et al.Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097. doi:10.1371/journal.pmed.1000097 PubMed DOI PMC

Hatabu H, Hunninghake GM, Richeldi L, et al.Interstitial lung abnormalities detected incidentally on CT: a position paper from the Fleischner Society. Lancet Respir Med 2020; 8: 726–737. doi:10.1016/S2213-2600(20)30168-5 PubMed DOI PMC

Hoyer N, Thomsen LH, Wille MMW, et al.Increased respiratory morbidity in individuals with interstitial lung abnormalities. BMC Pulm Med 2020; 20: 67. doi:10.1186/s12890-020-1107-0 PubMed DOI PMC

Hoyer N, Wille MMW, Thomsen LH, et al.Interstitial lung abnormalities are associated with increased mortality in smokers. Respir Med 2018; 136: 77–82. doi:10.1016/j.rmed.2018.02.001 PubMed DOI

Jin GY, Lynch D, Chawla A, et al.Interstitial lung abnormalities in a CT lung cancer screening population: prevalence and progression rate. Radiology 2013; 268: 563–571. doi:10.1148/radiol.13120816 PubMed DOI PMC

Lee JW, Kim HY, Goo JM, et al.Radiological report of pilot study for the Korean lung cancer screening (K-LUCAS) project: feasibility of implementing lung imaging reporting and data system. Korean J Radiol 2018; 19: 803–808. doi:10.3348/kjr.2018.19.4.803 PubMed DOI PMC

Salvatore M, Henschke CI, Yip R, et al.Journal club: Evidence of interstitial lung disease on low-dose chest CT images: prevalence, patterns, and progression. AJR Am J Roentgenol 2016; 206: 487–494. doi:10.2214/AJR.15.15537 PubMed DOI

Sverzellati N, Guerci L, Randi G, et al.Interstitial lung diseases in a lung cancer screening trial. Eur Respir J 2011; 38: 392–400. doi:10.1183/09031936.00201809 PubMed DOI

Hewitt RJ, Bartlett EC, Ganatra R, et al.Lung cancer screening provides an opportunity for early diagnosis and treatment of interstitial lung disease. Thorax 2022; 77: 1149–1151. doi:10.1136/thorax-2022-219068 PubMed DOI

Putman RK, Hatabu H, Araki T, et al.Association between interstitial lung abnormalities and all-cause mortality. JAMA 2016; 315: 672–681. doi:10.1001/jama.2016.0518 PubMed DOI PMC

Putman RK, Gudmundsson G, Axelsson GT, et al.Imaging patterns are associated with interstitial lung abnormality progression and mortality. Am J Respir Crit Care Med 2019; 200: 175–183. doi:10.1164/rccm.201809-1652OC PubMed DOI PMC

Podolanczuk AJ, Putman RK.. Clinical relevance and management of “pre-interstitial lung disease”. Clin Chest Med 2021; 42: 241–249. doi:10.1016/j.ccm.2021.03.009 PubMed DOI PMC

Southern BD, Scheraga RG, Yadav R.. Managing interstitial lung disease detected on CT during lung cancer screening. Cleve Clin J Med 2016; 83: 55–65. doi:10.3949/ccjm.83a.14157 PubMed DOI

Munden RF, Black WC, Hartman TE, et al.Managing incidental findings on thoracic CT: lung findings. a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2021; 18: 1267–1279. doi:10.1016/j.jacr.2021.04.014 PubMed DOI

Hansell DM, Bankier AA, MacMahon H, et al.Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008; 246: 697–722. doi:10.1148/radiol.2462070712 PubMed DOI

Jacobson FL, Austin JH, Field JK, et al.Development of the American Association for Thoracic Surgery guidelines for low-dose computed tomography scans to screen for lung cancer in North America: recommendations of the American Association for Thoracic Surgery Task Force for Lung Cancer Screening and Surveillance. J Thorac Cardiovasc Surg 2012; 144: 25–32. doi:10.1016/j.jtcvs.2012.05.059 PubMed DOI

Oudkerk M, Devaraj A, Vliegenthart R, et al.European position statement on lung cancer screening. Lancet Oncol 2017; 18: e754–e766. doi:10.1016/S1470-2045(17)30861-6 PubMed DOI

de Torres JP, Bastarrika G, Wisnivesky JP, et al.Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest 2007; 132: 1932–1938. doi:10.1378/chest.07-1490 PubMed DOI

Gierada DS, Guniganti P, Newman BJ, et al.Quantitative CT assessment of emphysema and airways in relation to lung cancer risk. Radiology 2011; 261: 950–959. doi:10.1148/radiol.11110542 PubMed DOI PMC

Hatayama O, Kobayashi T, Fujimoto K, et al.Utility of single-slice high-resolution CT in upper lung field combined with low-dose spiral CT for lung-cancer screening in the detection of emphysema. Intern Med 2007; 46: 1519–1525. doi:10.2169/internalmedicine.46.6343 PubMed DOI

Labaki WW, Xia M, Murray S, et al.Quantitative emphysema on low-dose CT imaging of the chest and risk of lung cancer and airflow obstruction: an analysis of the national lung screening trial. Chest 2021; 159: 1812–1820. doi:10.1016/j.chest.2020.12.004 PubMed DOI PMC

Li Y, Swensen SJ, Karabekmez LG, et al.Effect of emphysema on lung cancer risk in smokers: a computed tomography-based assessment. Cancer Prev Res (Phila) 2011; 4: 43–50. doi:10.1158/1940-6207.CAPR-10-0151 PubMed DOI PMC

Li Z, Xia Y, Fang Y, et al.The importance of CT quantitative evaluation of emphysema in lung cancer screening cohort with negative findings by visual evaluation. Clin Respir J 2019; 13: 741–750. doi:10.1111/crj.13084 PubMed DOI

Mets OM, Smit EJ, Mohamed Hoesein FA, et al.Visual versus automated evaluation of chest computed tomography for the presence of chronic obstructive pulmonary disease. PLoS One 2012; 7: e42227. doi:10.1371/journal.pone.0042227 PubMed DOI PMC

Ruparel M, Quaife SL, Dickson JL, et al.Prevalence, symptom burden, and underdiagnosis of chronic obstructive pulmonary disease in a lung cancer screening cohort. Ann Am Thorac Soc 2020; 17: 869–878. doi:10.1513/AnnalsATS.201911-857OC PubMed DOI PMC

Sanchez-Salcedo P, Wilson DO, de-Torres JP, et al.Improving selection criteria for lung cancer screening. The potential role of emphysema. Am J Respir Crit Care Med 2015; 191: 924–931. doi:10.1164/rccm.201410-1848OC PubMed DOI PMC

Sanchez-Salcedo P, Berto J, de-Torres JP, et al.Lung cancer screening: fourteen year experience of the Pamplona early detection program (P-IELCAP). Arch Bronconeumol 2015; 51: 169–176. PubMed

Wang Q, Takashima S, Wang JC, et al.Prevalence of emphysema in individuals who underwent screening CT for lung cancer in Nagano prefecture of Japan. Respiration 2001; 68: 352–356. doi:10.1159/000050526 PubMed DOI

Wille MM, Thomsen LH, Petersen J, et al.Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis. Eur Radiol 2016; 26: 487–494. doi:10.1007/s00330-015-3826-9 PubMed DOI

Wille MM, Thomsen LH, Dirksen A, et al.Emphysema progression is visually detectable in low-dose CT in continuous but not in former smokers. Eur Radiol 2014; 24: 2692–2699. doi:10.1007/s00330-014-3294-7 PubMed DOI

Wilson DO, Leader JK, Fuhrman CR, et al.Quantitative computed tomography analysis, airflow obstruction, and lung cancer in the Pittsburgh Lung Screening Study. J Thorac Oncol 2011; 6: 1200–1205. doi:10.1097/JTO.0b013e318219aa93 PubMed DOI PMC

Wilson DO, Weissfeld JL, Balkan A, et al.Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med 2008; 178: 738–744. doi:10.1164/rccm.200803-435OC PubMed DOI PMC

Zulueta JJ, Wisnivesky JP, Henschke CI, et al.Emphysema scores predict death from COPD and lung cancer. Chest 2012; 141: 1216–1223. doi:10.1378/chest.11-0101 PubMed DOI PMC

González J, Henschke CI, Yankelevitz DF, et al.Emphysema phenotypes and lung cancer risk. PLoS One 2019; 14: e0219187. PubMed PMC

Aberle DR, Adams AM, Berg CD, et al.Baseline characteristics of participants in the randomized National Lung Screening Trial. J Natl Cancer Inst 2010; 102: 1771–1779. doi:10.1093/jnci/djq434 PubMed DOI PMC

Camiciottoli G, Cavigli E, Grassi L, et al.Prevalence and correlates of pulmonary emphysema in smokers and former smokers. A densitometric study of participants in the ITALUNG trial. Eur Radiol 2009; 19: 58–66. doi:10.1007/s00330-008-1131-6 PubMed DOI

Balkan A, Bulut Y, Fuhrman CR, et al.COPD phenotypes in a lung cancer screening population. Clin Respir J 2016; 10: 48–53. doi:10.1111/crj.12180 PubMed DOI

Gazourian L, Thedinger WB, Regis SM, et al.Qualitative emphysema and risk of COPD hospitalization in a multicenter CT lung cancer screening cohort study. Respir Med 2021; 176: 106245. doi:10.1016/j.rmed.2020.106245 PubMed DOI PMC

Mizuno S, Takiguchi Y, Fujikawa A, et al.Chronic obstructive pulmonary disease and interstitial lung disease in patients with lung cancer. Respirology 2009; 14: 377–383. doi:10.1111/j.1440-1843.2008.01477.x PubMed DOI

Gonzalez J, Marin M, Sanchez-Salcedo P, et al.Lung cancer screening in patients with chronic obstructive pulmonary disease. Ann Transl Med 2016; 4: 160. doi:10.21037/atm.2016.03.57 PubMed DOI PMC

Smith BM, Pinto L, Ezer N, et al.Emphysema detected on computed tomography and risk of lung cancer: a systematic review and meta-analysis. Lung Cancer 2012; 77: 58–63. doi:10.1016/j.lungcan.2012.02.019 PubMed DOI

Maldonado F, Bartholmai BJ, Swensen SJ, et al.Are airflow obstruction and radiographic evidence of emphysema risk factors for lung cancer? A nested case-control study using quantitative emphysema analysis. Chest 2010; 138: 1295–1302. doi:10.1378/chest.09-2567 PubMed DOI

Kishi K, Gurney JW, Schroeder DR, et al.The correlation of emphysema or airway obstruction with the risk of lung cancer: a matched case-controlled study. Eur Respir J 2002; 19: 1093–1098. doi:10.1183/09031936.02.00264202 PubMed DOI

Schwartz AG, Lusk CM, Wenzlaff AS, et al.Risk of lung cancer associated with COPD phenotype based on quantitative image analysis. Cancer Epidemiol Biomarkers Prev 2016; 25: 1341–1347. doi:10.1158/1055-9965.EPI-16-0176 PubMed DOI PMC

Gallardo-Estrella L, Pompe E, de Jong PA, et al.Normalized emphysema scores on low dose CT: validation as an imaging biomarker for mortality. PLoS One 2017; 12: e0188902. doi:10.1371/journal.pone.0188902 PubMed DOI PMC

Sverzellati N, Cademartiri F, Bravi F, et al.Relationship and prognostic value of modified coronary artery calcium score, FEV1, and emphysema in lung cancer screening population: the MILD trial. Radiology 2012; 262: 460–467. doi:10.1148/radiol.11110364 PubMed DOI

Gazourian L, Regis SM, Pagura EJ, et al.Qualitative coronary artery calcification scores and risk of all cause, COPD and pneumonia hospital admission in a large CT lung cancer screening cohort. Respir Med 2021; 186: 106540. doi:10.1016/j.rmed.2021.106540 PubMed DOI PMC

Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease 2022 Report. Date last accessed: 7 July 2022. https://goldcopd.org/archived-reports/

National Institute for Health and Care Excellence (NICE). Chronic Obstructive Pulmonary Disease in Over 16s: Diagnosis and Management (NG115). 2018. Date last accessed: 10 October 2019. www.nice.org.uk/guidance/ng115 PubMed

Guirguis-Blake JM, Senger CA, Webber EM, et al.Screening for chronic obstructive pulmonary disease: evidence report and systematic review for the US preventive services task force. JAMA 2016; 315: 1378–1393. doi:10.1001/jama.2016.2654 PubMed DOI

Bastarrika G, Wisnivesky JP, Pueyo JC, et al.Low-dose volumetric computed tomography for quantification of emphysema in asymptomatic smokers participating in an early lung cancer detection trial. J Thorac Imaging 2009; 24: 206–211. doi:10.1097/RTI.0b013e3181a65263 PubMed DOI

Gietema HA, Zanen P, Schilham A, et al.Distribution of emphysema in heavy smokers: impact on pulmonary function. Respir Med 2010; 104: 76–82. doi:10.1016/j.rmed.2009.08.004 PubMed DOI

Mohamed Hoesein FA, de Hoop B, Zanen P, et al.CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax 2011; 66: 782–787. doi:10.1136/thx.2010.145995 PubMed DOI

Tang LYW, Coxson HO, Lam S, et al.Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health 2020; 2: e259–e267. doi:10.1016/S2589-7500(20)30064-9 PubMed DOI

McWilliams A, Tammemagi MC, Mayo JR, et al.Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013; 369: 910–919. doi:10.1056/NEJMoa1214726 PubMed DOI PMC

Callister ME, Baldwin DR, Akram AR, et al.British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax 2015; 70: Suppl. 2, ii1–ii54. doi:10.1136/thoraxjnl-2015-207168 PubMed DOI

Bartlett EC, Kemp SV, Ridge CA, et al.Baseline results of the West London lung cancer screening pilot study – impact of mobile scanners and dual risk model utilisation. Lung Cancer 2020; 148: 12–19. doi:10.1016/j.lungcan.2020.07.027 PubMed DOI

Horst C, Dickson JL, Tisi S, et al.Delivering low-dose CT screening for lung cancer: a pragmatic approach. Thorax 2020; 75: 831–832. doi:10.1136/thoraxjnl-2020-215131 PubMed DOI

Crosbie PA, Gabe R, Simmonds I, et al.Yorkshire Lung Screening Trial (YLST): protocol for a randomised controlled trial to evaluate invitation to community-based low-dose CT screening for lung cancer versus usual care in a targeted population at risk. BMJ Open 2020; 10: e037075. doi:10.1136/bmjopen-2020-037075 PubMed DOI PMC

Kang HR, Cho JY, Lee SH, et al.Role of low-dose computerized tomography in lung cancer screening among never-smokers. J Thorac Oncol 2019; 14: 436–444. doi:10.1016/j.jtho.2018.11.002 PubMed DOI

MacRedmond R, Logan PM, Lee M, et al.Screening for lung cancer using low dose CT scanning. Thorax 2004; 59: 237–241. doi:10.1136/thx.2003.008821 PubMed DOI PMC

van de Wiel JC, Wang Y, Xu DM, et al.Neglectable benefit of searching for incidental findings in the Dutch–Belgian lung cancer screening trial (NELSON) using low-dose multidetector CT. Eur Radiol 2007; 17: 1474–1482. doi:10.1007/s00330-006-0532-7 PubMed DOI

Priola AM, Priola SM, Giaj-Levra M, et al.Clinical implications and added costs of incidental findings in an early detection study of lung cancer by using low-dose spiral computed tomography. Clin Lung Cancer 2013; 14: 139–148. doi:10.1016/j.cllc.2012.05.005 PubMed DOI

Swensen SJ, Jett JR, Sloan JA, et al.Screening for lung cancer with low-dose spiral computed tomography. Am J Respir Crit Care Med 2002; 165: 508–513. doi:10.1164/ajrccm.165.4.2107006 PubMed DOI

Blanchon T, Bréchot JM, Grenier PA, et al.Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer 2007; 58: 50–58. doi:10.1016/j.lungcan.2007.05.009 PubMed DOI

Field JK, Duffy SW, Baldwin DR, et al.The UK Lung Cancer Screening Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol Assess 2016; 20: 1–146. doi:10.3310/hta20400 PubMed DOI PMC

Sanchez-Carpintero Abad M, Sanchez-Salcedo P, de-Torres JP, et al.Prevalence and burden of bronchiectasis in a lung cancer screening program. PLoS One 2020; 15: e0231204. doi:10.1371/journal.pone.0231204 PubMed DOI PMC

Bhalla M, Turcios N, Aponte V, et al.Cystic fibrosis: scoring system with thin-section CT. Radiology 1991; 179: 783–788. doi:10.1148/radiology.179.3.2027992 PubMed DOI

Maisonneuve P, Rampinelli C, Bertolotti R, et al.Low-dose computed tomography screening for lung cancer in people with workplace exposure to asbestos. Lung Cancer 2019; 131: 23–30. doi:10.1016/j.lungcan.2019.03.003 PubMed DOI

Roberts HC, Patsios DA, Paul NS, et al.Screening for malignant pleural mesothelioma and lung cancer in individuals with a history of asbestos exposure. J Thorac Oncol 2009; 4: 620–628. doi:10.1097/JTO.0b013e31819f2e0e PubMed DOI

Kato K, Gemba K, Ashizawa K, et al.Low-dose chest computed tomography screening of subjects exposed to asbestos. Eur J Radiol 2018; 101: 124–128. doi:10.1016/j.ejrad.2018.02.017 PubMed DOI

Senat. Le drame de l'amiante en France: comprendre, mieux réparer, en tirer des leçons pour l'avenir (rapport). [The drama of asbestos in France: understand, repair better, learn lessons for the future (report).] Date last updated: 26 October 2005. Last accessed January 2023. www.senat.fr/rap/r05-037-1/r05-037-148.html

Vierikko T, Jarvenpaa R, Autti T, et al.Chest CT screening of asbestos-exposed workers: lung lesions and incidental findings. Eur Respir J 2007; 29: 78–84. doi:10.1183/09031936.00073606 PubMed DOI

Mendoza DP, Chintanapakdee W, Zhang EW, et al.Management and outcomes of suspected infectious and inflammatory lung abnormalities identified on lung cancer screening CT. AJR Am J Roentgenol 2021; 217: 1083–1092. doi:10.2214/AJR.20.25124 PubMed DOI

Hecht HS, Cronin P, Blaha MJ, et al.2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J Cardiovasc Comput Tomogr 2017; 11: 74–84. doi:10.1016/j.jcct.2016.11.003 PubMed DOI

Agatston AS, Janowitz WR, Hildner FJ, et al.Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827–832. doi:10.1016/0735-1097(90)90282-T PubMed DOI

Xie X, Zhao Y, de Bock GH, et al.Validation and prognosis of coronary artery calcium scoring in nontriggered thoracic computed tomography: systematic review and meta-analysis. Circ Cardiovasc Imaging 2013; 6: 514–521. doi:10.1161/CIRCIMAGING.113.000092 PubMed DOI

Williams MC, Abbas A, Tirr E, et al.Reporting incidental coronary, aortic valve and cardiac calcification on non-gated thoracic computed tomography, a consensus statement from the BSCI/BSCCT and BSTI. Br J Radiol 2021; 94: 20200894. doi:10.1259/bjr.20200894 PubMed DOI PMC

Chiles C, Duan F, Gladish GW, et al.Association of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methods. Radiology 2015; 276: 82–90. doi:10.1148/radiol.15142062 PubMed DOI PMC

Christensen JL, Sharma E, Gorvitovskaia AY, et al.Impact of slice thickness on the predictive value of lung cancer screening computed tomography in the evaluation of coronary artery calcification. J Am Heart Assoc 2019; 8: e010110. doi:10.1161/JAHA.118.010110 PubMed DOI PMC

Dirrichs T, Penzkofer T, Reinartz SD, et al.Extracoronary thoracic and coronary artery calcifications on chest CT for lung cancer screening: association with established cardiovascular risk factors – the “CT-Risk” trial. Acad Radiol 2015; 22: 880–889. doi:10.1016/j.acra.2015.03.005 PubMed DOI

Jacobs PC, Gondrie MJ, van der Graaf Y, et al.Coronary artery calcium can predict all-cause mortality and cardiovascular events on low-dose CT screening for lung cancer. AJR Am J Roentgenol 2012; 198: 505–511. doi:10.2214/AJR.10.5577 PubMed DOI

Jacobs PC, Prokop M, van der Graaf Y, et al.Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose non-gated computed tomography in a high-risk population of heavy smokers. Atherosclerosis 2010; 209: 455–462. doi:10.1016/j.atherosclerosis.2009.09.031 PubMed DOI

Lessmann N, van Ginneken B, Zreik M, et al.Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging 2018; 37: 615–625. doi:10.1109/TMI.2017.2769839 PubMed DOI

Rasmussen T, Kober L, Abdulla J, et al.Coronary artery calcification detected in lung cancer screening predicts cardiovascular death. Scand Cardiovasc J 2015; 49: 159–167. doi:10.3109/14017431.2015.1039572 PubMed DOI

Rasmussen T, Kober L, Pedersen JH, et al.Relationship between chronic obstructive pulmonary disease and subclinical coronary artery disease in long-term smokers. Eur Heart J Cardiovasc Imaging 2013; 1: 1159–1166. doi:10.1093/ehjci/jet057 PubMed DOI

Stemmer A, Shadmi R, Bregman-Amitai O, et al.Using machine learning algorithms to review computed tomography scans and assess risk for cardiovascular disease: retrospective analysis from the National Lung Screening Trial (NLST). PLoS ONE 2020; 15: e0236021. doi:10.1371/journal.pone.0236021 PubMed DOI PMC

Takx RA, Isgum I, Willemink MJ, et al.Quantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: results of the NELSON study. J Cardiovasc Comput Tomogr 2015; 9: 50–57. doi:10.1016/j.jcct.2014.11.006 PubMed DOI

Mets OM, Vliegenthart R, Gondrie MJ, et al.Lung cancer screening CT-based prediction of cardiovascular events. JACC Cardiovasc Imaging 2013; 1: 899–907. doi:10.1016/j.jcmg.2013.02.008 PubMed DOI

Schreuder A, Jacobs C, Lessmann N, et al.Combining pulmonary and cardiac computed tomography biomarkers for disease-specific risk modelling in lung cancer screening. Eur Respir J 2021; 58: 2003386. doi:10.1183/13993003.03386-2020 PubMed DOI

Willemink MJ, Takx RA, Isgum I, et al.Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population. Int J Cardiovasc Imaging 2015; 31: 1243–1249. doi:10.1007/s10554-015-0664-4 PubMed DOI PMC

Ruparel M, Quaife SL, Dickson JL, et al.Evaluation of cardiovascular risk in a lung cancer screening cohort. Thorax 2019; 74: 1140–1146. doi:10.1136/thoraxjnl-2018-212812 PubMed DOI PMC

Balata H, Blandin Knight S, Barber P, et al.Targeted lung cancer screening selects individuals at high risk of cardiovascular disease. Lung Cancer 2018; 124: 148–153. doi:10.1016/j.lungcan.2018.08.006 PubMed DOI

Watts JR Jr, Sonavane SK, Snell-Bergeon J, et al.Visual scoring of coronary artery calcification in lung cancer screening computed tomography: association with all-cause and cardiovascular mortality risk. Coron Artery Dis 2015; 26: 157–162. doi:10.1097/MCA.0000000000000189 PubMed DOI

Zhu Y, Wang Y, Gioia WE, et al.Visual scoring of aortic valve calcifications on low-dose CT in lung cancer screening. Eur Radiol 2020; 30: 2658–2668. doi:10.1007/s00330-019-06614-w PubMed DOI

Zhu Y, Yip R, Shemesh J, et al.Combined aortic valve and coronary artery calcifications in lung cancer screening as predictors of death from cardiovascular disease. Eur Radiol 2020; 30: 6847–6857. doi:10.1007/s00330-020-07049-4 PubMed DOI

Lee HY, Kim SM, Lee KS, et al.Quantification of aortic valve calcifications detected during lung cancer-screening CT helps stratify subjects necessitating echocardiography for aortic stenosis diagnosis. Medicine (Baltimore) 2016; 95: e3710. doi:10.1097/MD.0000000000003710 PubMed DOI PMC

Klein-Awerjanow K, Rzyman W, Ostrowski M, et al.Aortic stenosis as an additional finding in low-dose computed tomography lung cancer screening: a cross-sectional study. Ann Intern Med 2021; 174: 1482–1483. doi:10.7326/M20-5507 PubMed DOI

Bons LR, Sedghi Gamechi Z, Thijssen CGE, et al.Growth of the thoracic aorta in the smoking population: The Danish Lung Cancer Screening Trial. Int J Cardiol 2020; 299: 276–281. doi:10.1016/j.ijcard.2019.06.010 PubMed DOI

Steiger D, Han D, Yip R, et al.Increased main pulmonary artery diameter and main pulmonary artery to ascending aortic diameter ratio in smokers undergoing lung cancer screening. Clin Imaging 2020; 63: 16–23. doi:10.1016/j.clinimag.2019.11.011 PubMed DOI

Lessmann N, de Jong PA, Celeng C, et al.Sex differences in coronary artery and thoracic aorta calcification and their association with cardiovascular mortality in heavy smokers. JACC Cardiovasc Imaging 2019; 12: 1808–1817. doi:10.1016/j.jcmg.2018.10.026 PubMed DOI

Adriaans BP, Ramaekers MJFG, Heuts S, et al.Determining the optimal interval for imaging surveillance of ascending aortic aneurysms. Neth Heart J 2021; 29: 623–631. doi:10.1007/s12471-021-01564-9 PubMed DOI PMC

Kim JB, Spotnitz M, Lindsay ME, et al.Risk of aortic dissection in the moderately dilated ascending aorta. J Am Coll Cardiol 2016; 68: 1209–1219. doi:10.1016/j.jacc.2016.06.025 PubMed DOI

Park K-H, Chung S, Kim DJ, et al.Natural history of moderately dilated tubular ascending aorta: implications for determining the optimal imaging interval. Eur J Cardiothorac Surg 2017; 51: 959–964. doi:10.1093/ejcts/ezx024 PubMed DOI

Hammer MM, Kong CY.. Cost-effectiveness of follow-up CT for incidental ascending aortic dilatation. Radiol Cardiothorac Imaging 2023; 5: e220169. doi:10.1148/ryct.220169 PubMed DOI PMC

Araki T, Washko GR, Schiebler ML, et al.The Framingham Heart Study: populational CT-based phenotyping in the lungs and mediastinum. Eur J Radiol Open 2020; 7: 100260. doi:10.1016/j.ejro.2020.100260 PubMed DOI PMC

Henschke CI, Lee IJ, Wu N, et al.CT screening for lung cancer: prevalence and incidence of mediastinal masses. Radiology 2006; 239: 586–590. doi:10.1148/radiol.2392050261 PubMed DOI

Yoon SH, Choi SH, Kang CH, et al.Incidental anterior mediastinal nodular lesions on chest CT in asymptomatic subjects. J Thorac Oncol 2018; 13: 359–366. doi:10.1016/j.jtho.2017.11.124 PubMed DOI

Araki T, Nishino M, Gao W, et al.Anterior mediastinal masses in the Framingham Heart Study: prevalence and CT image characteristics. Eur J Radiol Open 2015; 2: 26–31. doi:10.1016/j.ejro.2014.12.003 PubMed DOI PMC

Fang W, Xu N, Shen Y, et al.Management of incidentally detected small anterior mediastinal nodules: which way to go? Lung Cancer 2022; 168: 30–35. doi:10.1016/j.lungcan.2022.04.007 PubMed DOI

Kent MS, Wang T, Gangadharan SP, et al.What is the prevalence of a “nontherapeutic” thymectomy? Ann Thorac Surg 2014; 97: 276–282. doi:10.1016/j.athoracsur.2013.07.121 PubMed DOI

Ackman JB, Verzosa S, Kovach AE, et al.High rate of unnecessary thymectomy and its cause. Can computed tomography distinguish thymoma, lymphoma, thymic hyperplasia, and thymic cysts? Eur J Radiol 2015; 84: 524–533. doi:10.1016/j.ejrad.2014.11.042 PubMed DOI

Munden RF, Carter BW, Chiles C, et al.Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J Am Coll Radiol 2018; 15: 1087–1096. doi:10.1016/j.jacr.2018.04.029 PubMed DOI

McLoud TC. Incidental lymphadenopathy at CT lung cancer screening. Radiology 2022; 302: 693–694. doi:10.1148/radiol.212168 PubMed DOI

Jacobs PC, Mali WP, Grobbee DE, et al.Prevalence of incidental findings in computed tomographic screening of the chest: a systematic review. J Comput Assist Tomogr 2008; 32: 214–221. doi:10.1097/RCT.0b013e3181585ff2 PubMed DOI

Godoy MCB, White CS, Erasmus JJ, et al.Extrapulmonary neoplasms in lung cancer screening. Transl Lung Cancer Res 2018; 7: 368–375. doi:10.21037/tlcr.2018.06.05 PubMed DOI PMC

McKee BJ, Regis SM, McKee AB, et al.Performance of ACR lung-RADS in a clinical CT lung screening program. J Am Coll Radiol 2015; 12: 273–276. doi:10.1016/j.jacr.2014.08.004 PubMed DOI

Chalian H, McAdams HP, Lee Y, et al.Mediastinal lymphadenopathy in the national lung screening trial (NLST) is associated with interval lung cancer. Radiology 2022; 302: 684–692. doi:10.1148/radiol.210522 PubMed DOI

Mascalchi M, Zompatori M.. Mediastinal lymphadenopathy in lung cancer screening: a red flag. Radiology 2022; 302: 695–696. doi:10.1148/radiol.212501 PubMed DOI

Tsai EB, Chiles C, Carter BW, et al.Incidental findings on lung cancer screening: significance and management. Semin Ultrasound CT MR 2018; 39: 273–281. doi:10.1053/j.sult.2018.02.005 PubMed DOI

Shetty SK, Maher MM, Hahn PF, et al.Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology. AJR Am J Roentgenol 2006; 187: 1349–1356. doi:10.2214/AJR.05.0468 PubMed DOI

Kucharczyk MJ, Menezes RJ, McGregor A, et al.Assessing the impact of incidental findings in a lung cancer screening study by using low-dose computed tomography. Can Assoc Radiol J 2011; 62: 141–145. doi:10.1016/j.carj.2010.02.008 PubMed DOI

Loomans-Kropp HA, Dunn BK, Kramer BS, et al.Thyroid incidentalomas in association with low-dose computed tomography in the national lung screening trial. Am J Epidemiol 2020; 189: 27–33. doi:10.1093/aje/kwz219 PubMed DOI PMC

Bahl M. Incidental thyroid nodules in the national lung screening trial: estimation of prevalence, malignancy rate, and strategy for workup. Acad Radiol 2018; 25: 1152–1155. doi:10.1016/j.acra.2018.02.016 PubMed DOI

Hoang JK, Langer JE, Middleton WD, et al.Managing incidental thyroid nodules detected on imaging: white paper of the ACR Incidental Thyroid Findings Committee. J Am Coll Radiol 2015; 12: 143–150. doi:10.1016/j.jacr.2014.09.038 PubMed DOI

Rampinelli C, Preda L, Maniglio M, et al.Extrapulmonary malignancies detected at lung cancer screening. Radiology 2011; 261: 293–299. doi:10.1148/radiol.11102231 PubMed DOI

Nguyen XV, Davies L, Eastwood JD, et al.Extrapulmonary findings and malignancies in participants screened with chest CT in the national lung screening trial. J Am Coll Radiol 2017; 14: 324–330. doi:10.1016/j.jacr.2016.09.044 PubMed DOI

Hu M, Yip R, Yankelevitz DY, et al.CT screening for lung cancer: frequency of enlarged adrenal glands identified in baseline and annual repeat rounds. Eur Radiol 2016; 26: 4475–4481. doi:10.1007/s00330-016-4331-5 PubMed DOI

Kim H, Kim HY, Goo JM, et al.Lung cancer CT screening and lung-RADS in a tuberculosis-endemic country: the Korean lung cancer screening project (K-LUCAS). Radiology 2020; 296: 181–188. doi:10.1148/radiol.2020192283 PubMed DOI

Xie X, Dijkstra AE, Vonk JM, et al.Chronic respiratory symptoms associated with airway wall thickening measured by thin-slice low-dose CT. AJR Am J Roentgenol 2014; 203: W383–W390. doi:10.2214/AJR.13.11536 PubMed DOI

Mets OM, Schmidt M, Buckens CF, et al.Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res 2013; 14: 59. doi:10.1186/1465-9921-14-59 PubMed DOI PMC

Pompe E, de Jong PA, van Rikxoort EM, et al.Smokers with emphysema and small airway disease on computed tomography have lower bone density. Int J Chron Obstruct Pulmon Dis 2016; 11: 1207–1216. doi:10.2147/COPD.S103680 PubMed DOI PMC

Pompe E, Bartstra J, Verhaar HJ, et al.Bone density loss on computed tomography at 3-year follow-up in current compared to former male smokers. Eur J Radiol 2017; 89: 177–181. doi:10.1016/j.ejrad.2017.02.011 PubMed DOI

de Jong WU, de Jong PA, Vliegenthart R, et al.Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants. J Bone Miner Res 2014; 29: 2224–2229. doi:10.1002/jbmr.2248 PubMed DOI

Buckens CF, van der Graaf Y, Verkooijen HM, et al.Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. Eur Radiol 2015; 25: 132–139. doi:10.1007/s00330-014-3361-0 PubMed DOI

Gore RM, Pickhardt PJ, Mortele KJ, et al.Management of incidental liver lesions on CT: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2017; 14: 1429–1437. doi:10.1016/j.jacr.2017.07.018 PubMed DOI

Herts BR, Silverman SG, Hindman NM, et al.Management of the incidental renal mass on CT: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2018; 15: 264–273. doi:10.1016/j.jacr.2017.04.028 PubMed DOI

Penha D, Pinto E, Monaghan C, et al.Incidental findings on lung cancer screening: pictorial essay and systematic checklist. J Bras Pneumol 2022; 48: e20210371. doi:10.36416/1806-3756/e20210371 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...