The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MR/S026088/1
Medical Research Council - United Kingdom
PubMed
37813596
PubMed Central
PMC10574825
DOI
10.1212/nxi.0000000000200169
PII: 10/6/e200169
Knihovny.cz E-zdroje
- MeSH
- fluoresceinová angiografie metody MeSH
- konsensus MeSH
- lidé MeSH
- optická koherentní tomografie * MeSH
- retina diagnostické zobrazování MeSH
- retinální cévy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (κ 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (κ 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies.
Zobrazit více v PubMed
Petzold A, Balcer LJ, Calabresi PA, et al. . Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16(10):797-812. doi:10.1016/S1474-4422(17)30278-8 PubMed DOI
Oertel FC, Specovius S, Zimmermann HG, et al. . Retinal optical coherence tomography in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1068. doi:10.1212/NXI.0000000000001068 PubMed DOI PMC
Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS ONE. 2018;13(1):e0190621. doi:10.1371/journal.pone.0190621 PubMed DOI PMC
Virgili G, Menchini F, Murro V, Peluso E, Rosa F, Casazza G. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev. 2011;7:CD008081. doi:10.1002/14651858.CD008081.pub2 PubMed DOI
Dziedziak J, Zaleska-Żmijewska A, Szaflik JP, Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye: a review of the pathogenesis, diagnostic methods, and treatment of hypertensive retinopathy. Med Sci Monit. 2022;28:e935135. doi:10.12659/MSM.935135 PubMed DOI PMC
Nolan-Kenney RC, Liu M, Akhand O, et al. . Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol. 2019;85(5):618-629. doi:10.1002/ana.25462 PubMed DOI
Lambe J, Fitzgerald KC, Murphy OC, et al. . Association of spectral-domain OCT with long-term disability worsening in multiple sclerosis. Neurology. 2021;96(16):e2058-e2069. doi:10.1212/WNL.0000000000011788 PubMed DOI PMC
Wauschkuhn J, Solorza Buenrostro G, Aly L, et al. . Retinal ganglion cell loss is associated with future disability worsening in early relapsing-remitting multiple sclerosis. Eur J Neurol. 2023;30(4):982-990. doi:10.1111/ene.15681 PubMed DOI
Zimmermann HG, Knier B, Oberwahrenbrock T, et al. . Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. 2018;75(9):1071-1079. doi:10.1001/jamaneurol.2018.1011 PubMed DOI PMC
Petzold A, Fraser CL, Abegg M, et al. . Diagnosis and classification of optic neuritis. Lancet Neurol. 2022;21(12):1120-1134. doi:10.1016/S1474-4422(22)00200-9 PubMed DOI
Bsteh G, Hegen H, Altmann P, et al. . Diagnostic performance of adding the optic nerve region assessed by optical coherence tomography to the diagnostic criteria for MS. Neurology. 2023;101(8):e784-e793. doi:10.1212/WNL.0000000000207507 PubMed DOI PMC
Tewarie P, Balk L, Costello F, et al. . The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE. 2012;7(4):e34823. doi:10.1371/journal.pone.0034823 PubMed DOI PMC
Schippling S, Balk LJ, Costello F, et al. . Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler J. 2015;21(2):163-170. doi:10.1177/1352458514538110 PubMed DOI
Aytulun A, Cruz-Herranz A, Aktas O, et al. . APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies. Neurology. 2021;97(2):68-79. doi:10.1212/WNL.0000000000012125 PubMed DOI PMC
Campbell JP, Zhang M, Hwang TS, et al. . Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi:10.1038/srep42201 PubMed DOI PMC
Maesa J-M, Baños-Álvarez E, Rosario-Lozano M-P, Blasco-Amaro J-A. Diagnostic accuracy of optical coherence tomography angiography in the detection of neovasculature in age-related macular degeneration: a meta-analysis. Acta Ophthalmol. 2022;100(2):e368-e376. doi:10.1111/aos.14979 PubMed DOI PMC
Zhang B, Chou Y, Zhao X, Yang J, Chen Y. Early detection of microvascular impairments with optical coherence tomography angiography in diabetic patients without clinical retinopathy: a meta-analysis. Am J Ophthalmol 2021;222:226-237. doi:10.1016/j.ajo.2020.09.032 PubMed DOI
Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis. Br J Ophthalmol. 2019;103(11):1677-1684. doi:10.1136/bjophthalmol-2018-313461 PubMed DOI
Aly L, Noll C, Wicklein R, et al. . Dynamics of retinal vessel loss after acute optic neuritis in patients with relapsing multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9(3). doi:10.1212/NXI.0000000000001159 PubMed DOI PMC
Noll C, Hiltensperger M, Aly L, et al. . Association of the retinal vasculature, intrathecal immunity, and disability in multiple sclerosis. Front Immunol. 2022;13:997043. doi:10.3389/fimmu.2022.997043 PubMed DOI PMC
Murphy OC, Kalaitzidis G, Vasileiou E, et al. . Optical coherence tomography and optical coherence tomography angiography findings after optic neuritis in multiple sclerosis. Front Neurol. 2020;11:618879. doi:10.3389/fneur.2020.618879 PubMed DOI PMC
Murphy OC, Kwakyi O, Iftikhar M, et al. . Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler J. 2020;26(7):815-828. doi:10.1177/1352458519845116 PubMed DOI PMC
Lim HB, Kim YW, Kim JM, Jo YJ, Kim JY. The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography. Sci Rep. 2018;8(1):12897. doi:10.1038/s41598-018-31321-9 PubMed DOI PMC
Al-Sheikh M, Ghasemi Falavarjani K, Akil H, Sadda SR. Impact of image quality on OCT angiography based quantitative measurements. Int J Retina Vitreous. 2017;3:13. doi:10.1186/s40942-017-0068-9 PubMed DOI PMC
Watanabe Y, Takahashi Y, Numazawa H. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. J Biomed Opt. 2014;19(2):21105. doi:10.1117/1.JBO.19.2.021105 PubMed DOI
Fleiss JL. Statistical Methods for Rates and Proportions, 3rd ed. Wiley-Interscience; 2003.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174. PubMed
Mihailovic N, Lauermann JL, Schubert F, et al. . Vergleich der Bildqualität zweier unterschiedlicher OCT-Angiografie-Systeme mit Fokus auf Bewegungsartefakten bei gesunden Probanden. Klin Monbl Augenheilkd. 2019;236(9):1115-1121. doi:10.1055/a-0838-5880 PubMed DOI
Holmen IC, Konda SM, Pak JW, et al. . Prevalence and severity of artifacts in optical coherence tomographic angiograms. JAMA Ophthalmol. 2020;138(2):119-126. doi:10.1001/jamaophthalmol.2019.4971 PubMed DOI PMC
Enders C, Lang GE, Dreyhaupt J, Loidl M, Lang GK, Werner JU. Quantity and quality of image artifacts in optical coherence tomography angiography. PLoS ONE. 2019;14(1):e0210505. doi:10.1371/journal.pone.0210505 PubMed DOI PMC
Lujan BJ, Calhoun CT, Glassman AR, et al. . Optical coherence tomography angiography quality across three multicenter clinical studies of diabetic retinopathy. Transl Vis Sci Technol. 2021;10(3):2. doi:10.1167/tvst.10.3.2 PubMed DOI PMC
Pohlmann D, Berlin M, Reidl F, et al. . Longitudinal comparison of constant artifacts in optical coherence tomography angiography in patients with posterior uveitis compared to healthy subjects. J Clin Med. 2022;11(18):5376. doi:10.3390/jcm11185376 PubMed DOI PMC
Reich M, Boehringer D, Rothaus K, et al. . Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid. Int Ophthalmol. 2020;40(8):2007-2016. doi:10.1007/s10792-020-01376-7 PubMed DOI PMC
Lee JJ, Lee JE, Sadda SR, Park SW, Byon I. Impact of signal strength on quantitative retinal and choriocapillaris flow measurement from optical coherence tomography angiography. Sci Rep. 2022;12(1):4692. doi:10.1038/s41598-022-08781-1 PubMed DOI PMC
Lim HB, Kim YW, Nam KY, Ryu CK, Jo YJ, Kim JY. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Sci Rep. 2019;9(1):16299. doi:10.1038/s41598-019-52818-x PubMed DOI PMC
Feucht N, Maier M, Lepennetier G, et al. . Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler J. 2019;25(2):224-234. doi:10.1177/1352458517750009 PubMed DOI
Ghasemi Falavarjani K, Habibi A, Anvari P, et al. . Effect of segmentation error correction on optical coherence tomography angiography measurements in healthy subjects and diabetic macular oedema. Br J Ophthalmol. 2020;104(2):162-166. doi:10.1136/bjophthalmol-2019-314018 PubMed DOI
Bontzos G, Kabanarou SA, Garnavou-Xirou C, et al. . Segmentation errors and motion artifacts in OCT-A associated with epiretinal membranes. Can J Ophthalmol. 2020;55(4):293-300. doi:10.1016/j.jcjo.2019.12.007 PubMed DOI
Zhang Y, Yang L, Gao Y, et al. . Choroid and choriocapillaris changes in early-stage Parkinson's disease: a swept-source optical coherence tomography angiography-based cross-sectional study. Alzheimer's Res Ther. 2022;14(1):116. doi:10.1186/s13195-022-01054-z PubMed DOI PMC
Aly L, Strauß E-M, Feucht N, et al. . Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders. Mult Scler. 2022;28(4):522-531. doi:10.1177/13524585211028831 PubMed DOI PMC
Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F. Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1535-1542. doi:10.1007/s00417-017-3684-z PubMed DOI
Lauermann JL, Woetzel AK, Treder M, et al. . Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2018;256(10):1807-1816. doi:10.1007/s00417-018-4053-2 PubMed DOI
Woetzel AK, Lauermann JL, Kreitz K, et al. . Optical coherence tomography angiography image quality assessment at varying retinal expertise levels. J Curr Ophthalmol. 2019;31(2):161-167. doi:10.1016/j.joco.2018.12.002 PubMed DOI PMC
Cui Y, Zhu Y, Wang JC, et al. . Imaging artifacts and segmentation errors with wide-field swept-source optical coherence tomography angiography in diabetic retinopathy. Transl Vis Sci Technol. 2019;8(6):18. doi:10.1167/tvst.8.6.18 PubMed DOI PMC
Mohammadi S, Gouravani M, Salehi MA, et al. . Optical coherence tomography angiography measurements in multiple sclerosis: a systematic review and meta-analysis. J Neuroinflammation. 2023;20(1):85. doi:10.1186/s12974-023-02763-4 PubMed DOI PMC