Plasma levels of mannan-binding lectin-associated serine proteases are increased in type 1 diabetes patients with insulin resistance

. 2024 Jan 09 ; 215 (1) : 58-64.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37832142

Grantová podpora
MR/X502704/1 Medical Research Council - United Kingdom

Activation of the lectin pathway of the complement system, as demonstrated by elevated levels of mannan-binding lectin proteins (MBL), contributes to vascular pathology in type 1 diabetes (T1D). Vascular complications are greatest in T1D individuals with concomitant insulin resistance (IR), however, whether IR amplifies activiation of the lectin pathway in T1D is unknown. We pooled pretreatment data from two RCTs and performed a cross-sectional analysis on 46 T1D individuals. We employed estimated glucose disposal rate (eGDR), a validated IR surrogate with cut-points of: <5.1, 5.1-8.7, and > 8.7 mg/kg/min to determine IR status, with lower eGDR values conferring higher degrees of IR. Plasma levels of MBL-associated proteases (MASP-1, MASP-2, and MASP-3) and their regulatory protein MAp44 were compared among eGDR classifications. In a subset of 14 individuals, we assessed change in MASPs and MAp44 following improvement in IR. We found that MASP-1, MASP-2, MASP-3, and MAp44 levels increased in a stepwise fashion across eGDR thresholds with elevated MASPs and MAp44 levels conferring greater degrees of IR. In a subset of 14 patients, improvement in IR was associated with significant reductions in MASPs, but not MAp44, levels. In conclusion, IR in T1D amplifies levels of MASP-1/2/3 and their regulator MAp44, and improvement of IR normalizes MASP-1/2/3 levels. Given that elevated levels of these proteins contribute to vascular pathology, amplification of the lectin pathway of the complement system may offer mechanistic insight into the relationship between IR and vascular complications in T1D.

Zobrazit více v PubMed

Ajjan RA, Schroeder V.. Role of complement in diabetes. Mol Immunol 2019, 114, 270–7. doi:10.1016/j.molimm.2019.07.031. PubMed DOI

Jenny L, Ajjan R, King R, Thiel S, Schroeder V.. Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol 2015, 180, 227–32. doi:10.1111/cei.12574. PubMed DOI PMC

Schroeder V, Carter AM, Dunne J, Mansfield MW, Grant PJ.. Proinflammatory and hypofibrinolytic phenotype in healthy first‐degree relatives of patients with Type 2 diabetes. J Thromb Haemost 2010, 8, 2080–2. doi:10.1111/j.1538-7836.2010.03966.x. PubMed DOI

Hess K, Alzahrani SH, Mathai M, Schroeder V, Carter AM, Howell G, et al. . A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 2011, 55, 1103–13. doi:10.1007/s00125-011-2301-7. PubMed DOI

Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, Bhakdi S.. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 2002, 43, 1104–8. PubMed

Uesugi N, Sakata N, Nangaku M, Abe M, Horiuchi S, Hisano S, et al. . Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am J Kidney Dis 2004, 44, 224–38. doi:10.1053/j.ajkd.2004.04.027. PubMed DOI

Yongqing T, Drentin N, Duncan RC, Wijeyewickrema LC, Pike RN.. Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: Two genes, five proteins and many functions?. Biochim Biophys Acta 2012, 1824, 253–62. doi:10.1016/j.bbapap.2011.05.021. PubMed DOI

Hess K, Ajjan R, Phoenix F, Dobó J, Gál P, Schroeder V.. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One 2012, 7, e35690. doi:10.1371/journal.pone.0035690. PubMed DOI PMC

Kozarcanin H, Lood C, Munthe-Fog L, Sandholm K, Hamad OA, Bengtsson AA, et al. . The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost 2016, 14, 531–45. doi:10.1111/jth.13208. PubMed DOI

Jenny L, Dobo J, Gal P, Pál G, Lam WA, Schroeder V.. MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. PLoS One 2018, 13, e0191292. doi:10.1371/journal.pone.0191292. PubMed DOI PMC

Hansen TK, Tarnow L, Thiel S, Steffensen R, Stehouwer CD, Schalkwijk CG, et al. . Association between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 2004, 53, 1570–6. doi:10.2337/diabetes.53.6.1570. PubMed DOI

Hansen TK, Forsblom C, Saraheimo M, Thorn L, Wadén J, Høyem P, et al. .. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 2010, 53, 1517–24. doi:10.1007/s00125-010-1742-8. PubMed DOI

King BC, Blom AM.. Non-traditional roles of complement in type 2 diabetes: metabolism, insulin secretion and homeostasis. Mol Immunol 2017, 84, 34–42. doi:10.1016/j.molimm.2016.12.009. PubMed DOI

Wlazlo N, van Greevenbroek MMJ, Ferreira I, Feskens EJM, van der Kallen CJH, Schalkwijk CG, et al. . Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period: the CODAM Study. Diabetes Care 2014, 37, 1900–9. doi:10.2337/dc13-2804. PubMed DOI

Phieler J, Garcia-Martin R, Lambris JD, Chavakis T.. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013, 25, 47–53. doi:10.1016/j.smim.2013.04.003. PubMed DOI PMC

Zhang J, Wright W, Bernlohr DA, Cushman SW, Chen X.. Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am J Physiol Endocrinol Metab 2007, 292, E1433–40. doi:10.1152/ajpendo.00664.2006. PubMed DOI

Lim J, Iyer A, Suen JY, Seow V, Reid RC, Brown L, et al. . C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. FASEB J 2013, 27, 822–31. doi:10.1096/fj.12-220582. PubMed DOI

Murray I, Havel PJ, Sniderman AD, Cianflone K.. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology 2000, 141, 1041–9. doi:10.1210/endo.141.3.7364. PubMed DOI

Helliwell R, Warnes H, Kietsiriroje N, Campbell M, Birch R, Pearson SM, et al. . Body mass index, estimated glucose disposal rate and vascular complications in type 1 diabetes: beyond glycated haemoglobin. Diabet Med 2021, 38, e14529. doi:10.1111/dme.14529. PubMed DOI

Nystrom T, Holzmann MJ, Eliasson B, Svensson A-M, Sartipy U.. Estimated glucose disposal rate predicts mortality in adults with type 1 diabetes. Diab Obes Metab 2018, 20, 556–63. doi:10.1111/dom.13110. PubMed DOI

Linn W, Persson M, Rathsman B, Ludvigsson J, Lind M, Andersson Franko M, et al. . Estimated glucose disposal rate is associated with retinopathy and kidney disease in young people with type 1 diabetes: a nationwide observational study. Cardiovasc Diabetol 2023, 22, 61. doi:10.1186/s12933-023-01791-x. PubMed DOI PMC

Helmink MAG, de Vries M, Visseren FLJ, de Ranitz WL, de Valk HW, Westerink J.. Insulin resistance and risk of vascular events, interventions and mortality in type 1 diabetes. Eur J Endocrinol 2021, 185, 831–40. doi:10.1530/EJE-21-0636. PubMed DOI

NICE. Hypertension in adults: diagnosis and management NICE guideline [NG136] 2019. https://www.nice.org.uk/guidance/ng136.

Kietsiriroje N, Pearson S, Campbell M, Ariëns RAS, Ajjan RA.. Double diabetes: a distinct high‐risk group?. Diabetes Obes Metab 2019, 21, 2609–18. doi:10.1111/dom.13848. PubMed DOI

Thiel S, Jensen L, Degn SE, Nielsen HJ, Gál P, Dobó J, et al. . Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules: normal and acute-phase levels in serum and stoichiometry of lectin pathway components. Clin Exp Immunol 2012, 169, 38–48. doi:10.1111/j.1365-2249.2012.04584.x. PubMed DOI PMC

Degn SE, Jensen L, Gál P, Dobó J, Holmvad SH, Jensenius JC, et al. . Biological variations of MASP-3 and MAp44, two splice products of the MASP1 gene involved in regulation of the complement system. J Immunol Methods 2010, 361, 37–50. doi:10.1016/j.jim.2010.07.006. PubMed DOI

Kietsiriroje N, Pearson SM, O’Mahoney LL, West DJ, Ariëns Robert AS, Ajjan RA, et al. . Glucose variability is associated with an adverse vascular profile but only in the presence of insulin resistance in individuals with type 1 diabetes: an observational study. Diab Vasc Dis Res 2022, 19, 147916412211032. doi:10.1177/14791641221103217. PubMed DOI PMC

Hayes AF. Introduction to Mediation, Moderation, and Conditional Process Analysis: A regression-based approach. 3rd ed. The Guilford Press; 2022.

Gedebjerg A, Bjerre M, Kjaergaard AD, Steffensen R, Nielsen JS, Rungby J, et al. . Mannose-Binding lectin and risk of cardiovascular events and mortality in type 2 diabetes: a Danish Cohort Study. Diabetes Care 2020, 43, 2190–8. doi:10.2337/dc20-0345. PubMed DOI

Hansen TK, Gall MA, Tarnow L, Thiel S, Stehouwer CD, Schalkwijk CG, et al. . Mannose-binding lectin and mortality in type 2 diabetes. Arch Intern Med 2006, 166, 2007–13. doi:10.1001/archinte.166.18.2007. PubMed DOI

Hansen TK, Thiel S, Knudsen ST, Gravholt CH, Christiansen JS, Mogensen CE, et al. . Elevated levels of Mannan-Binding lectin in patients with type 1 diabetes. J Clin Endocrinol Metab 2003, 88, 4857–61. doi:10.1210/jc.2003-030742. PubMed DOI

Bouwman LH, Eerligh P, Terpstra OT, Daha MR, de Knijff P, Ballieux BEPB, et al. . Elevated levels of Mannose-Binding lectin at clinical manifestation of type 1 diabetes in juveniles. Diabetes 2005, 54, 3002–6. doi:10.2337/diabetes.54.10.3002. PubMed DOI

Fortpied J, Vertommen D, Van Schaftingen E.. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev 2010, 26, 254–60. doi:10.1002/dmrr.1079. PubMed DOI

Ostergaard JA, Bjerre M, Dagnaes-Hansen F, Hansen TK, Thiel S, Flyvbjerg A.. Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes. Scand J Immunol 2013, 77, 187–94. doi:10.1111/sji.12027. PubMed DOI

Pavlov VI, La Bonte LR, Baldwin WM, Markiewski MM, Lambris JD, Stahl GL.. Absence of mannose-binding lectin prevents hyperglycemic cardiovascular complications. Am J Pathol 2012, 180, 104–12. doi:10.1016/j.ajpath.2011.09.026. PubMed DOI PMC

King BC, Blom AM.. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021, 43, 829–41. doi:10.1007/s00281-021-00873-w. PubMed DOI PMC

Pinto-Junior DC, Silva KS, Michalani ML, Yonamine CY, Esteves JV, Fabre NT, et al. . Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci Rep 2018, 8, 8109. doi:10.1038/s41598-018-26482-6. PubMed DOI PMC

Cassese A, Esposito I, Fiory F, Barbagallo APM, Paturzo F, Mirra P, et al. . In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J Biol Chem 2008, 283, 36088–99. doi:10.1074/jbc.M801698200. PubMed DOI PMC

Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, et al. . Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002, 51, 2082–9. doi:10.2337/diabetes.51.7.2082. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...