Extracellular vesicles of the probiotic bacteria E. coli O83 activate innate immunity and prevent allergy in mice
Language English Country Great Britain, England Media electronic
Document type Video-Audio Media, Journal Article
Grant support
P 34867
Austrian Science Fund FWF - Austria
P 33073
Austrian Science Fund FWF - Austria
DK W1248-B30
Austrian Science Fund FWF - Austria
PubMed
37864211
PubMed Central
PMC10588034
DOI
10.1186/s12964-023-01329-4
PII: 10.1186/s12964-023-01329-4
Knihovny.cz E-resources
- Keywords
- Allergic airway inflammation, Extracellular vesicles, Microbiota and innate immunity, Nasal route of administration, Outer membrane vesicles,
- MeSH
- Hypersensitivity * prevention & control metabolism MeSH
- Asthma * metabolism MeSH
- Escherichia coli MeSH
- Extracellular Vesicles * metabolism MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Lipopolysaccharides MeSH
- Mice MeSH
- Immunity, Innate MeSH
- Probiotics * pharmacology MeSH
- Inflammation metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Names of Substances
- Lipopolysaccharides MeSH
BACKGROUND: E. coli O83 (Colinfant Newborn) is a Gram-negative (G-) probiotic bacterium used in the clinic. When administered orally, it reduces allergic sensitisation but not allergic asthma. Intranasal administration offers a non-invasive and convenient delivery method. This route bypasses the gastrointestinal tract and provides direct access to the airways, which are the target of asthma prevention. G- bacteria such as E. coli O83 release outer membrane vesicles (OMVs) to communicate with the environment. Here we investigate whether intranasally administered E. coli O83 OMVs (EcO83-OMVs) can reduce allergic airway inflammation in mice. METHODS: EcO83-OMVs were isolated by ultracentrifugation and characterised their number, morphology (shape and size), composition (proteins and lipopolysaccharide; LPS), recognition by innate receptors (using transfected HEK293 cells) and immunomodulatory potential (in naïve splenocytes and bone marrow-derived dendritic cells; BMDCs). Their allergy-preventive effect was investigated in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS: EcO83-OMVs are spherical nanoparticles with a size of about 110 nm. They contain LPS and protein cargo. We identified a total of 1120 proteins, 136 of which were enriched in OMVs compared to parent bacteria. Proteins from the flagellum dominated. OMVs activated the pattern recognition receptors TLR2/4/5 as well as NOD1 and NOD2. EcO83-OMVs induced the production of pro- and anti-inflammatory cytokines in splenocytes and BMDCs. Intranasal administration of EcO83-OMVs inhibited airway hyperresponsiveness, and decreased airway eosinophilia, Th2 cytokine production and mucus secretion. CONCLUSIONS: We demonstrate for the first time that intranasally administered OMVs from probiotic G- bacteria have an anti-allergic effect. Our study highlights the advantages of OMVs as a safe platform for the prophylactic treatment of allergy. Video Abstract.
Department of Clinical Medicine Aarhus University Aarhus Denmark
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Infectious Diseases Aarhus University Hospital Aarhus Denmark
Field of Excellence Biohealth University of Graz Graz Austria
Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences Wroclaw Poland
Institute of Molecular Biosciences Karl Franzens University Graz Austria
See more in PubMed
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739–51. doi: 10.1038/s41577-021-00538-7. PubMed DOI
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke-Tejkl M, Flicker S, Kudlay D, et al. Past, present, and future of allergen immunotherapy vaccines. Allergy: Europ J Allergy Clinical Immunol. 2021;76:131–49. doi: 10.1111/all.14300. PubMed DOI PMC
Campbell DE, Boyle RJ, Thornton CA, Prescott SL. Mechanisms of allergic disease - environmental and genetic determinants for the development of allergy. Clinical Experiment Allergy. 2015;45:844–58. doi: 10.1111/cea.12531. PubMed DOI
Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L. Microbiome and asthma. Asthma Res Pract. 2018;4:1. doi: 10.1186/s40733-017-0037-y. PubMed DOI PMC
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss-Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy: Europ J Allergy Clinical Immunol. 2017;72:1859–67. doi: 10.1111/all.13220. PubMed DOI
Lopez-Santamarina A, Gonzalez EG, Lamas A, del Mondragon AC, Regal P, Miranda JM. Probiotics as a possible strategy for the prevention and treatment of allergies A narrative review. Foods. 2021;10:1–21. doi: 10.3390/foods10040701. PubMed DOI PMC
Cao L, Wang L, Yang L, Tao S, Xia R, Fan W. Long-term effect of early-life supplementation with probiotics on preventing atopic dermatitis: A meta-analysis. J Dermatolog Treatment. 2015;26:537–40. doi: 10.3109/09546634.2015.1027168. PubMed DOI
Panduru M, Panduru NM, Sələvəstru CM, Tiplica GS. Probiotics and primary prevention of atopic dermatitis: A meta-analysis of randomized controlled studies. J Europ Academ Dermatology Venereol. 2015;29:232–42. doi: 10.1111/jdv.12496. PubMed DOI
Abrahamsson TR, Jakobsson T, Björkstén B, Oldaeus G, Jenmalm MC. No effect of probiotics on respiratory allergies: A seven-year follow-up of a randomized controlled trial in infancy. Pediatric Allergy Immunol. 2013;24:556–61. doi: 10.1111/pai.12104. PubMed DOI
Azad MB, Coneys GJ, Kozyrskyj AL, Field CJ, Ramsey CD, Becker AB, et al. Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze Systematic review and meta-Analysis. BMJ (Online). 2013;347:1–15. PubMed PMC
Wei X, Jiang P, Liu J, Sun R, Zhu L. Association between probiotic supplementation and asthma incidence in infants: a meta-analysis of randomized controlled trials. J Asthma. 2020;57:167–78. doi: 10.1080/02770903.2018.1561893. PubMed DOI
Pellaton C, Nutten S, Thierry A-C, Boudousquié C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam. 2012;2012:1–8. PubMed PMC
Spacova I, Petrova MI, Fremau A, Pollaris L, Vanoirbeek J, Ceuppens JL, et al. Intranasal administration of probiotic Lactobacillus Rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy: Europ J Allergy Clinical Immunol. 2019;74:100–10. doi: 10.1111/all.13502. PubMed DOI
Schabussova I, Hufnagl K, Wild C, Nutten S, Zuercher AW, Mercenier A, et al. Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine. 2011;29:1981–90. doi: 10.1016/j.vaccine.2010.12.101. PubMed DOI
Lodinova-Zadnikova R, Prokešová L, Kocourková I, Hrdý J, Žižka J. Prevention of allergy in infants of allergic mothers by probiotic escherichia coli. Int Arch Allergy Immunol. 2010;153:201–6. doi: 10.1159/000312638. PubMed DOI
Lodinova-Zadnikova R, Cukrowska B, Tlaskalova-Hogenova H. Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years) Int Arch Allergy Immunol. 2003;131:209–11. doi: 10.1159/000071488. PubMed DOI
Zwicker C, Sarate P, Drinić M, Ambroz K, Korb E, Smole U, et al. Prophylactic and therapeutic inhibition of allergic airway inflammation by probiotic Escherichia coli O83. J Allergy Clinical Immunol. 2018;142:1987–1990.e7. doi: 10.1016/j.jaci.2018.07.029. PubMed DOI
Pradhan D, Mallappa RH, Grover S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control. 2020;108:106872. doi: 10.1016/j.foodcont.2019.106872. DOI
Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: a review. Biomedic Pharmacother. 2019;111:537–47. doi: 10.1016/j.biopha.2018.12.104. PubMed DOI
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat Rev Microbiol. 2015;13:605–19. doi: 10.1038/nrmicro3525. PubMed DOI PMC
Hu R, Li J, Zhao Y, Lin H, Liang L, Wang M, et al. Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC) Microb Cell Fact. 2020;19:119. doi: 10.1186/s12934-020-01372-7. PubMed DOI PMC
David L, Bordignon P, Meunier E, Oswald E. Outer membrane vesicles produced by pathogenic strains of Escherichia coli block autophagic flux and exacerbate inflammasome activation. Autophagy. 2021;18(12):2913–2925. doi: 10.1080/15548627.2022.2054040. PubMed DOI PMC
Bielaszewska M, Marejková M, Bauwens A, Kunsmann-Prokscha L, Mellmann A, Karch H. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB. Int J Medical Microbiol. 2018;308:882–9. doi: 10.1016/j.ijmm.2018.06.004. PubMed DOI
Bielaszewska M, Rüter C, Bauwens A, Greune L, Jarosch K-A, Steil D, et al. Host cell interactions of outer membrane vesicle- associated virulence factors of enterohemorrhagic Escherichia coliO157: Intracellular delivery, trafficking and mechanisms of cell injury. PLoS Pathog. 2017;13(2):e1006159. PubMed PMC
Hu R, Lin H, Li J, Zhao Y, Wang M, Sun X, et al. Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in RAW264.7 macrophages. BMC Microbiol. 2020;20:1–13. doi: 10.1186/s12866-020-01953-x. PubMed DOI PMC
Cañas MA, Giménez R, Fábrega MJ, Toloza L, Baldomà L, Badia J. Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One. 2016;11:1–22. doi: 10.1371/journal.pone.0160374. PubMed DOI PMC
Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, et al. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front Microbiol. 2017;8:1–13. doi: 10.3389/fmicb.2017.01274. PubMed DOI PMC
Diaz-Garrido N, Badia J, Baldoma L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles. 2021;10(13):e12161. PubMed PMC
Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15:375–87. doi: 10.1038/nri3837. PubMed DOI
Bitto NJ, Kaparakis-Liaskos M. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci. 2017;18:1–15. doi: 10.3390/ijms18061287. PubMed DOI PMC
Gilmore WJ, Johnston EL, Zavan L, Bitto NJ, Kaparakis-Liaskos M. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol Immunol. 2021;134:72–85. doi: 10.1016/j.molimm.2021.02.027. PubMed DOI
Ladhani SN, Ramsay M, Borrow R, Riordan A, Watson JM, Pollard AJ. Enter B and W: Two new meningococcal vaccine programmes launched. Arch Dis Child. 2016;101:91–5. doi: 10.1136/archdischild-2015-308928. PubMed DOI PMC
Kohl P, Zingl FG, Eichmann TO, Schild S. Isolation of outer membrane vesicles including their quantitative and qualitative analyses. Methods Mol Biol. 2018;1839:117–34. PubMed
Edhager AV, Povlsen JA, Løfgren B, Bøtker HE, Palmfeldt J. Proteomics of the Rat Myocardium during Development of Type 2 Diabetes Mellitus Reveals Progressive Alterations in Major Metabolic Pathways. J Proteome Res. 2018;17:2521–32. doi: 10.1021/acs.jproteome.8b00276. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. doi: 10.1038/nbt.1511. PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40. doi: 10.1038/nmeth.3901. PubMed DOI
Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10:20560. doi: 10.1038/s41598-020-76603-3. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–52. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, et al. Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS- Induced Colitis in Strictly Strain-Specific Manner. PLoS ONE. 2015;10(7):e0134050. PubMed PMC
Korb E, Drinić M, Wagner A, Geissler N, Inic-Kanada A, Peschke R, et al. Reduction of allergic lung disease by mucosal application of toxoplasma Gondii-Derived molecules: possible role of carbohydrates. Front Immunol. 2021;11:1–14. doi: 10.3389/fimmu.2020.612766. PubMed DOI PMC
Drinic M, Wagner A, Sarate P, Zwicker C, Korb E, Loupal G, et al. Toxoplasma gondii tachyzoite-extract acts as a potent immunomodulator against allergic sensitization and airway inflammation. Sci Rep. 2017;7(1):15211. PubMed PMC
Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43:998–1010. doi: 10.1016/j.immuni.2015.09.012. PubMed DOI PMC
Schoenhals G, Whitfield C. Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern. J Bacteriol. 1993;175:5395–402. doi: 10.1128/jb.175.17.5395-5402.1993. PubMed DOI PMC
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-Negative and Gram-Positive bacterial cell wall components. Technol Japan Scie. 1999;11:443–51. PubMed
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103. doi: 10.1038/35074106. PubMed DOI
Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Chen YY, Singleton W, et al. Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens. PLoS One. 2016;11:1–20. doi: 10.1371/journal.pone.0151967. PubMed DOI PMC
Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol. 2010;12:372–85. doi: 10.1111/j.1462-5822.2009.01404.x. PubMed DOI
Ou T, Lilly M, Jiang W. The Pathologic Role of Toll-Like Receptor 4 in Prostate Cancer. Front Immunol. 2018;9:1188. PubMed PMC
Cochet F, Peri F. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. Int J Mol Sci. 2017;18(11):2318. PubMed PMC
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Schuijs MJ, Hammad H, Lambrecht BN. Professional and ‘Amateur’ Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol. 2019;40:22–34. doi: 10.1016/j.it.2018.11.001. PubMed DOI PMC
Ege M, Mayer M, Normand AC, Genuneit J, Cookson W, Braun-Fahrländer Ch, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9. doi: 10.1056/NEJMoa1007302. PubMed DOI
Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate Immunity and Asthma Risk in Amish and Hutterite farm children. New England Medicine. 2016;375:411–21. doi: 10.1056/NEJMoa1508749. PubMed DOI PMC
Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 1979;2015(349):1106–10. PubMed
Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blumer N, von Mutius E, et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007;119:1514–21. doi: 10.1016/j.jaci.2007.03.023. PubMed DOI
Hagner S, Harb H, Zhao M, Stein K, Holst O, Ege MJ, et al. Farm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy: Europ J Allergy Clinical Immunol. 2013;68:322–9. doi: 10.1111/all.12094. PubMed DOI
Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med. 2009;206:2869–77. doi: 10.1084/jem.20090845. PubMed DOI PMC
Debarry J, Hanuszkiewicz A, Stein K, Holst O, Heine H. The allergy-protective properties of Acinetobacter lwoffii F78 are imparted by its lipopolysaccharide. Allergy: Europ J Allergy Clinical Immunol. 2010;65:690–7. doi: 10.1111/j.1398-9995.2009.02253.x. PubMed DOI
Murakami D, Yamada H, Yajima T, Masuda A, Komune S, Yoshikai Y. Lipopolysaccharide inhalation exacerbates allergic airway inflammation by activating mast cells and promoting Th2 responses. Clinical Experimental Allergy. 2007;37:339–47. doi: 10.1111/j.1365-2222.2006.02633.x. PubMed DOI
Blumer N, Herz U, Wegmann M, Renz H, Blümer N, Herz U, et al. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clinical Experiment Allergy. 2005;35:397–402. doi: 10.1111/j.1365-2222.2005.02184.x. PubMed DOI
Liu AH. Endotoxin exposure in allergy and asthma: Reconciling a paradox. J Allergy Clinical Immunol. 2002;109:379–92. doi: 10.1067/mai.2002.122157. PubMed DOI
Tulić MK, Wale JL, Holt PG, Sly PD. Modification of the inflammatory response to allergen challenge after exposure to bacterial lipopolysaccharide. Am J Respir Cell Mol Biol. 2000;22:604–12. doi: 10.1165/ajrcmb.22.5.3710. PubMed DOI
Bickert T, Trujillo-Vargas CM, Duechs M, Wohlleben G, Polte T, Hansen G, et al. Probiotic Escherichia coli Nissle 1917 suppresses Allergen-Induced Th2 responses in the Airways. Int Arch Allergy Immunol. 2009;149:219–30. doi: 10.1159/000199717. PubMed DOI
Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Experimental Medicine. 2002;196:1645–51. doi: 10.1084/jem.20021340. PubMed DOI PMC
Manabe T, Kato M, Ueno T, Kawasaki K. Flagella proteins contribute to the production of outer membrane vesicles from Escherichia coli W3110. Biochem Biophys Res Commun. 2013;441:151–6. doi: 10.1016/j.bbrc.2013.10.022. PubMed DOI
Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galán JE, et al. Involvement of toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A. 2006;103:12487–92. doi: 10.1073/pnas.0605200103. PubMed DOI PMC
Zhong M, Yan H, Li Y. Flagellin: A unique microbe-associated molecular pattern and a multi-faceted immunomodulator. Cell Mol Immunol. 2017;14:862–4. doi: 10.1038/cmi.2017.78. PubMed DOI PMC
Lee DH, Park HK, Lee HR, Sohn H, Sim S, Park HJ, et al. Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma. Clin Transl Allergy. 2022;12:1–11. doi: 10.1002/clt2.12138. PubMed DOI PMC
Luo XQ, Liu J, Mo LH, Yang G, Ma F, Ning Y, et al. Flagellin alleviates airway allergic response by stabilizing eosinophils through modulating oxidative stress. J Innate Immun. 2021;13:333–44. doi: 10.1159/000515463. PubMed DOI PMC
Lv X, Chang Q, Wang Q, Jin QR, Liu HZ, Yang SB, et al. Flagellin maintains eosinophils in the intestine. Cytokine. 2022;150:155769. doi: 10.1016/j.cyto.2021.155769. PubMed DOI
Eastwood TA, Baker K, Streather BR, Hiscock JR, Lennon C, Mulvihill DP, et al. High-yield vesicle-packaged recombinant protein production from E coli. Cell Reports Methods. 2023;3:100396. doi: 10.1016/j.crmeth.2023.100396. PubMed DOI PMC
Jiang L, Driedonks TAP, Jong WSP, Dhakal S, Bart van den Berg van Saparoea H, Sitaras I, et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J Extracell Vesicles. 2022;11. PubMed PMC
Sarate PJ, Heinl S, Poiret S, Drinić M, Zwicker C, SchabussovaE. coli Nissle, I, et al. is a safe mucosal delivery vector for a birch-grass pollen chimera to prevent allergic poly-sensitization. Mucosal Immunol. 1917;2019(12):132–44. PubMed
Afshin Z, Joep B, de Bas W, Jan HH, Bth E, Elly R, et al. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response. Infect Immun. 2016;84:3024–33. doi: 10.1128/IAI.00635-16. PubMed DOI PMC
A comprehensive summary of the ASEV-CzeSEV joint meeting on extracellular vesicles