• This record comes from PubMed

Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis

. 2023 Nov ; 29 (11) : 2731-2736. [epub] 20231023

Language English Country United States Media print-electronic

Document type Case Reports, Journal Article

Links

PubMed 37872223
PubMed Central PMC10667094
DOI 10.1038/s41591-023-02613-z
PII: 10.1038/s41591-023-02613-z
Knihovny.cz E-resources

Autoimmunity is intrinsically driven by memory T and B cell clones inappropriately targeted at self-antigens. Selective depletion or suppression of self-reactive T cells remains a holy grail of autoimmune therapy, but disease-associated T cell receptors (TCRs) and cognate antigenic epitopes remained elusive. A TRBV9-containing CD8+ TCR motif was recently associated with the pathogenesis of ankylosing spondylitis, psoriatic arthritis and acute anterior uveitis, and cognate HLA-B*27-presented epitopes were identified. Following successful testing in nonhuman primate models, here we report human TRBV9+ T cell elimination in ankylosing spondylitis. The patient achieved remission within 3 months and ceased anti-TNF therapy after 5 years of continuous use. Complete remission has now persisted for 4 years, with three doses of anti-TRBV9 administered per year. We also observed a profound improvement in spinal mobility metrics and the Bath Ankylosing Spondylitis Metrology Index (BASMI). This represents a possibly curative therapy of an autoimmune disease via selective depletion of a TRBV-defined group of T cells. The anti-TRBV9 therapy could potentially be applicable to other HLA-B*27-associated spondyloarthropathies. Such targeted elimination of the underlying cause of the disease without systemic immunosuppression could offer a new generation of safe and efficient therapies for autoimmunity.

See more in PubMed

Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol. Today. 1990;11:137–142. doi: 10.1016/0167-5699(90)90051-A. PubMed DOI

Faham M, et al. Discovery of T cell receptor beta motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis Rheumatol. 2017;69:774–784. doi: 10.1002/art.40028. PubMed DOI

Komech EA, et al. CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology. 2018;57:1097–1104. doi: 10.1093/rheumatology/kex517. PubMed DOI

Pogorelyy MV, et al. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol. 2019;17:e3000314. doi: 10.1371/journal.pbio.3000314. PubMed DOI PMC

May E, et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens. 2002;60:299–308. doi: 10.1034/j.1399-0039.2002.600404.x. PubMed DOI

Yang X, et al. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature. 2022;612:771–777. doi: 10.1038/s41586-022-05501-7. PubMed DOI PMC

Komech EA, et al. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front. Immunol. 2022;13:973243. doi: 10.3389/fimmu.2022.973243. PubMed DOI PMC

Garrido-Mesa J, Brown MA. T cell repertoire profiling and the mechanism by which HLA-B27 causes ankylosing spondylitis. Curr. Rheumatol. Rep. 2022;24:398–410. doi: 10.1007/s11926-022-01090-6. PubMed DOI PMC

Bowness P. HLA-B27. Annu. Rev. Immunol. 2015;33:29–48. doi: 10.1146/annurev-immunol-032414-112110. PubMed DOI

Chiocchia G, Boissier MC, Fournier C. Therapy against murine collagen-induced arthritis with T cell receptor V beta-specific antibodies. Eur. J. Immunol. 1991;21:2899–2905. doi: 10.1002/eji.1830211202. PubMed DOI

Liu Z, et al. Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody: Vbeta13 as a therapeutic target and biomarker. Diabetes. 2012;61:1160–1168. doi: 10.2337/db11-0867. PubMed DOI PMC

Paul S, et al. TCR beta chain-directed bispecific antibodies for the treatment of T cell cancers. Sci. Transl. Med. 2021;13:eabd3595. doi: 10.1126/scitranslmed.abd3595. PubMed DOI PMC

Maciocia PM, et al. Targeting the T cell receptor beta-chain constant region for immunotherapy of T cell malignancies. Nat. Med. 2017;23:1416–1423. doi: 10.1038/nm.4444. PubMed DOI

Putintseva EV, et al. Mother and child T cell receptor repertoires: deep profiling study. Front. Immunol. 2013;4:463. doi: 10.3389/fimmu.2013.00463. PubMed DOI PMC

Xue, Z. et al. Disease associated human TCR characterization by deep-learning framework TCR-DeepInsight. Preprint at bioRxiv10.1101/2023.05.22.541406 (2023).

Nakayama M, Michels AW. Using the T cell receptor as a biomarker in type 1 diabetes. Front. Immunol. 2021;12:777788. doi: 10.3389/fimmu.2021.777788. PubMed DOI PMC

Rosati E, et al. A novel unconventional T cell population enriched in Crohn’s disease. Gut. 2022;71:2194–2204. doi: 10.1136/gutjnl-2021-325373. PubMed DOI PMC

Valente D, et al. Pharmacokinetics of novel Fc-engineered monoclonal and multispecific antibodies in cynomolgus monkeys and humanized FcRn transgenic mouse models. mAbs. 2020;12:1829337. doi: 10.1080/19420862.2020.1829337. PubMed DOI PMC

Mamedov IZ, et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol. Med. 2011;3:201–207. doi: 10.1002/emmm.201100129. PubMed DOI PMC

Britanova OV, et al. First autologous hematopoietic SCT for ankylosing spondylitis: a case report and clues to understanding the therapy. Bone Marrow Transpl. 2012;47:1479–1481. doi: 10.1038/bmt.2012.44. PubMed DOI

Hayashi F, et al. A new clustering method identifies multiple sclerosis-specific T-cell receptors. Ann. Clin. Transl. Neurol. 2021;8:163–176. doi: 10.1002/acn3.51264. PubMed DOI PMC

Sewell AK. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012;12:669–677. doi: 10.1038/nri3279. PubMed DOI PMC

Montalvao F, et al. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J. Clin. Invest. 2013;123:5098–5103. doi: 10.1172/JCI70972. PubMed DOI PMC

Shugay M, et al. Towards error-free profiling of immune repertoires. Nat. Methods. 2014;11:653–655. doi: 10.1038/nmeth.2960. PubMed DOI

Bolotin DA, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods. 2015;12:380–381. doi: 10.1038/nmeth.3364. PubMed DOI

Shugay M, et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 2015;11:e1004503. doi: 10.1371/journal.pcbi.1004503. PubMed DOI PMC

Wickham H. ggplot2: Elegant Graphics for Data Analysis. 1st edn. Springer-Verlag,; 2009.

Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–3647. doi: 10.1093/bioinformatics/btx469. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Repertoire-based mapping and time-tracking of T helper cell subsets in scRNA-Seq

. 2025 ; 16 () : 1536302. [epub] 20250404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...