Rediscovering Chara as a model organism for molecular and evo-devo studies
Language English Country Austria Media print-electronic
Document type Journal Article, Review
Grant support
20-13587S
Czech Science Foundation
289523
Grantová Agentura, Univerzita Karlova
393422
Grantová Agentura, Univerzita Karlova
PubMed
37880545
DOI
10.1007/s00709-023-01900-3
PII: 10.1007/s00709-023-01900-3
Knihovny.cz E-resources
- Keywords
- Chara, Charophytes, Model plants, Plant evolution,
- MeSH
- Biological Evolution MeSH
- Chara * MeSH
- Cytoplasmic Streaming MeSH
- Plants genetics MeSH
- Embryophyta * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Chara has been used as a model for decades in the field of plant physiology, enabling the investigation of fundamental physiological processes. In electrophysiological studies, Chara has been utilized thanks to its large internodal cells that can be easily manipulated. Additionally, Chara played a pioneering role in elucidating the presence and function of the cytoskeleton in cytoplasmic streaming, predating similar findings in terrestrial plants. Its representation considerably declined following the establishment and routine application of genetic transformation techniques in Arabidopsis. Nevertheless, the recent surge in evo-devo studies can be attributed to the whole genome sequencing of the Chara braunii, which has shed light on ancestral traits prevalent in land plants. Surprisingly, the Chara braunii genome encompasses numerous genes that were previously regarded as exclusive to land plants, suggesting their acquisition prior to the colonization of terrestrial habitats. This review summarizes the established methods used to study Chara, while incorporating recent molecular data, to showcase its renewed importance as a model organism in advancing plant evolutionary developmental biology.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Institute of Experimental Botany Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Abe J, Hori S, Tsuchikane Y et al (2011) Stable nuclear transformation of the Closterium peracerosum–strigosum–littorale Complex. Plant Cell Physiol 52:1676–1685. https://doi.org/10.1093/pcp/pcr103 PubMed DOI
Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100:126–142. https://doi.org/10.3732/ajb.1200318 PubMed DOI
Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004. https://doi.org/10.1093/aob/mcp044 PubMed DOI PMC
Beilby MJ (2019) Chara braunii genome: a new resource for plant electrophysiology. Biophys Rev 11:235–239. https://doi.org/10.1007/s12551-019-00512-7 PubMed DOI PMC
Beilby MJ, Casanova MT (2014) The physiology of characean cells. Springer, Heidelberg DOI
Beilby MJ, Bisson MA, Shepherd VA (2006) Electrophysiology of turgor regulation in charophyte cells. In: Volkov AG (ed) Plant electrophysiology: theory and methods. Springer, Heidelberg, pp 375–406 DOI
Blume M, Blindow I, Dahlke S, Vedder F (2009) Oospore variation in closely related Chara taxa. J Phycol 45:995–1002. https://doi.org/10.1111/j.1529-8817.2009.00725.x PubMed DOI
Bonnot C, Hetherington AJ, Champion C et al (2019) Neofunctionalisation of basic helix−loop−helix proteins occurred when embryophytes colonised the land. New Phytol 223:993–1008. https://doi.org/10.1111/nph.15829 PubMed DOI
Box RJ (1986) Quantitative short-term uptake of inorganic phosphate by the Chara hispida rhizoid. Plant Cell Environ 9:501–506. https://doi.org/10.1111/j.1365-3040.1986.tb01767.x DOI
Boyer JS (2016) Enzyme-less growth in Chara and terrestrial plants. Front Plant Sci 7:866. https://doi.org/10.3389/fpls.2016.00866 PubMed DOI PMC
Braun M (1996) Immunolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191:1–8. https://doi.org/10.1007/BF01280820 DOI
Braun M (1997) Gravitropism in tip-growing cells. Planta 203:S11-19. https://doi.org/10.1007/pl00008098 PubMed DOI
Braun M (2001) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125:1611–1619. https://doi.org/10.1104/pp.125.4.1611 PubMed DOI PMC
Braun M (2002) Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma 219:150–159. https://doi.org/10.1007/s007090200016 PubMed DOI
Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229:133–142. https://doi.org/10.1007/s00709-006-0208-9 PubMed DOI
Braun M, Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209:414–423. https://doi.org/10.1007/s004250050744 PubMed DOI
Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63:289–298 PubMed
Braun M, Wasteneys GO (1998) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205:39–50. https://doi.org/10.1007/s004250050294 PubMed DOI
Braun M, Foissner I, Löhring H et al (2007) Characean algae: still a valid model system to examine fundamental principles in plants. In: Esser K, Löttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Heidelberg, pp 193–220 DOI
Braun M (2018) Gravitropism in tip-growing rhizoids and protonemata of characean algae. In: Braun M, Böhmer M, Häder D-P et al (eds) Gravitational biology I: gravity sensing and graviorientation in microorganisms and plants. Springer International Publishing, Cham, pp 47–65 DOI
Bulychev AA, Alova AV (2022) Microfluidic interactions involved in chloroplast responses to plasma membrane excitation in Chara. Plant Physiol Biochem 183:111–119. https://doi.org/10.1016/j.plaphy.2022.05.005 PubMed DOI
Bulychev AA, Krupenina NA, Shapiguzov SY, Alova AV (2023) Plasma mebrane-chloroplast interactions activated by hyperpolarizating response in characean cells. Plant Physiol Biochem 201:107836. https://doi.org/10.1016/j.plaphy.2023.107836 PubMed DOI
Buschmann H (2020) Into another dimension: how streptophyte algae gained morphological complexity. J Exp Bot 71:3279–3286. https://doi.org/10.1093/jxb/eraa181 PubMed DOI
Buschmann H, Zachgo S (2016) The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci 21:872–883. https://doi.org/10.1016/j.tplants.2016.07.004 PubMed DOI
Cahoon AB, Nauss JA, Stanley CD, Qureshi A (2017) Deep transcriptome sequencing of two green algae, Chara vulgaris and Chlamydomonas reinhardtii, provides no evidence of organellar RNA editing. Genes 8:80. https://doi.org/10.3390/genes8020080 PubMed DOI PMC
Calero S, Rodrigo MA (2019) Germination capability of four charophyte populations (Characeae) from Mediterranean brackish ponds under warm experimental conditions. Webbia 74:149–158. https://doi.org/10.1080/00837792.2019.1608419 DOI
Casanova MT (1997) Oospore variation in three species of Chara (Charales, Chlorophyta). Phycologia 36:274–280. https://doi.org/10.2216/i0031-8884-36-4-274.1 DOI
Casanova MT (2005) An overview of Chara L. in Australia (Characeae, Charophyta). Aust Systematic Bot 18:25–39. https://doi.org/10.1071/SB04027 DOI
Casanova MT (2009) An overview of Nitella (Characeae, Charophyceae) in Australia. Aust Systematic Bot 22:193–218. https://doi.org/10.1071/SB08039 DOI
Cook ME, Graham LE, Lavin CA (1998) Cytokinesis and nodal anatomy in the charophycean green alga Chara zeylanica. Protoplasma 203:65–74. https://doi.org/10.1007/BF01280588 DOI
Corti B (1774) Osservazioni microscopiche sulla tremella, e sulla circolazione del fluido in una pianta acquajuola. Giuseppe Rocchi, Lucca
de Winton MD, Casanova MT, Clayton JS (2004) Charophyte germination and establishment under low irradiance. Aquat Bot 79:175–187. https://doi.org/10.1016/j.aquabot.2004.01.013 DOI
Domozych D, Bagdan K (2022) The cell biology of charophytes: exploring the past and models for the future. Plant Physiol 190:1588–1698. https://doi.org/10.1093/plphys/kiac390 PubMed DOI PMC
Duan Z, Ito K, Tominaga M (2020) Heterologous transformation of Camelina sativa with high-speed chimeric myosin XI-2 promotes plant growth and leads to increased seed yield. Plant Biotechnol 37:253–259. https://doi.org/10.5511/plantbiotechnology.20.0225b DOI
Foissner I, Wasteneys GO (2012) The characean internodal cell as a model system for studying wound healing. J Microsc 247:10–22. https://doi.org/10.1111/j.1365-2818.2011.03572.x PubMed DOI
Foissner I, Wasteneys GO (2014) Chapter seven - characean internodal cells as a model system for the study of cell organization. In: Jeon KW (ed) International review of cell and molecular biology. Academic Press, pp 307–364
Forsberg C (1965) Sterile germination of oospores of Chara and seeds of Najas marina. Physiol Plant 18:128–137. https://doi.org/10.1111/j.1399-3054.1965.tb06875.x DOI
Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257. https://doi.org/10.1111/j.1365-3040.2006.01614.x PubMed DOI
Gerber NR, Bisson MA, Chau R (1995) Anomalous differentiation in Chara rhizoids: effect of gravity vector. Int J Plant Sci 156:747–755. https://doi.org/10.1086/297298 DOI
Green PB (1954) The spiral growth pattern in the cell wall of Nitella axillaris. Am J Bot 41:403–409. https://doi.org/10.1002/j.1537-2197.1954.tb14356.x DOI
Green PB (1965) Pathways of cellular morphogenesis: a diversity in Nitella. J Cell Biol 27:343–363. https://doi.org/10.1083/jcb.27.2.343 PubMed DOI PMC
Hackenberg D, Pandey S (2014) Heterotrimeric G-proteins in green algae: an early innovation in the evolution of the plant lineage. Plant Signal Behav 9:e28457. https://doi.org/10.4161/psb.28457 PubMed DOI PMC
Hackenberg D, Twell D (2019) The evolution and patterning of male gametophyte development. Curr Top Dev Biol 131:257–298. https://doi.org/10.1016/bs.ctdb.2018.10.008 PubMed DOI
Hackenberg D, Sakayama H, Nishiyama T, Pandey S (2013) Characterization of the heterotrimeric G-protein complex and its regulator from the green alga Chara braunii expands the evolutionary breadth of plant G-protein signaling. Plant Physiol 163:1510–1517. https://doi.org/10.1104/pp.113.230425 PubMed DOI PMC
Häder D-P, Braun M, Grimm D, Hemmersbach R (2017) Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. npj Microgravity 3:1–8. https://doi.org/10.1038/s41526-017-0018-8 DOI
Haraguchi T, Tamanaha M, Suzuki K et al (2022) Discovery of ultrafast myosin, its amino acid sequence, and structural features. Proc Natl Acad Sci USA 119:e2120962119. https://doi.org/10.1073/pnas.2120962119 PubMed DOI PMC
Heß D, Holzhausen A, Hess WR (2023) Insight into the central and nodal cells transcriptome of the streptophyte green alga Chara braunii S276. https://doi.org/10.1101/2023.02.12.528195
Higo A, Kawashima T, Borg M et al (2018) Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat Commun 9:5283. https://doi.org/10.1038/s41467-018-07728-3 PubMed DOI PMC
Hoepflinger MC, Geretschlaeger A, Sommer A et al (2013) Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot 64:5553–5568. https://doi.org/10.1093/jxb/ert322 PubMed DOI PMC
Hoepflinger MC, Geretschlaeger A, Sommer A et al (2015) Molecular analysis and localization of CaARA7 a conventional RAB5 GTPase from characean algae. Traffic 16:534–554. https://doi.org/10.1111/tra.12267 PubMed DOI PMC
Holzhausen A, Porsche C, Schubert H (2018) Viability assessment and estimation of the germination potential of charophyte oospores: testing for site and species specificity. Bot Lett 165:147–158. https://doi.org/10.1080/23818107.2017.1393460 DOI
Holzhausen A, Stingl N, Rieth S et al (2022) Establishment and optimization of a new model organism to study early land plant evolution: germination, cultivation and oospore variation of Chara braunii Gmelin, 1826. Front Plant Sci 13:987741. https://doi.org/10.3389/fpls.2022.987741 PubMed DOI PMC
Imahori K, Iwasa K (1965) Pure culture and chemical regulation of the growth of charophytes. Phycologia 4:127–134. https://doi.org/10.2216/i0031-8884-4-3-127.1 DOI
Jin Q, Scherp P, Heimann K, Hasenstein KH (2008) Auxin and cytoskeletal organization in algae. Cell Biol Int 32:542–545. https://doi.org/10.1016/j.cellbi.2007.11.005 PubMed DOI
Jones VAS, Dolan L (2012) The evolution of root hairs and rhizoids. Ann Bot 110:205–212. https://doi.org/10.1093/aob/mcs136 PubMed DOI PMC
Kalin M, Smith MP (2007) Germination of Chara vulgaris and Nitella flexilis oospores: what are the relevant factors triggering germination? Aquat Bot 87:235–241. https://doi.org/10.1016/j.aquabot.2007.06.004 DOI
Kamiya N, Kuroda K (1956) Velocity distribution of the protoplasmic streaming in Nitella cells. Bot Mag Tokyo 69:544–554. https://doi.org/10.15281/jplantres1887.69.544 DOI
Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353. https://doi.org/10.1126/science.1065156 PubMed DOI
Kashiyama T, Kimura N, Mimura T, Yamamoto K (2000) Cloning and characterization of a myosin from characean alga, the fastest motor protein in the world. J Biochem 127:1065–1070. https://doi.org/10.1093/oxfordjournals.jbchem.a022699 PubMed DOI
Kato S, Sakayama H, Sano S et al (2008) Morphological variation and intraspecific phylogeny of the ubiquitous species Chara braunii (Charales, Charophyceae) in Japan. Phycologia 47:191–202. https://doi.org/10.2216/07-27.1 DOI
Kawai J, Kanazawa M, Suzuki R et al (2022) Highly efficient transformation of the model zygnematophycean alga Closterium peracerosum-strigosum-littorale complex by square-pulse electroporation. New Phytol 233:569–578. https://doi.org/10.1111/nph.17763 PubMed DOI
Kim YH, Mun H (1997) pH effects on distribution and oospore germination of Chara braunii. Algae 12:277–282
Kisnieriene V, Trębacz K, Pupkis V et al (2022) Evolution of long-distance signaling upon plant terrestrialization: comparison of action potentials in characean algae and in liverworts. Ann Bot 130:457–475. https://doi.org/10.1093/aob/mcac098 PubMed DOI PMC
Klima A, Foissner I (2008) FM dyes label sterol-rich plasma membrane domains and are internalized independently of the cytoskeleton in characean internodal cells. Plant Cell Physiol 49:1508–1521. https://doi.org/10.1093/pcp/pcn122 PubMed DOI
Kulich I, Schmid J, Teplova A, Qi L, Friml J (2023) Rapid redirection of auxin fluxes during root gravitropism by translocation of NGR proteins driving polarization of PIN-activating kinases. https://www.biorxiv.org/content/10.1101/2023.08.30.555533v1 . Accessed 10 September 2023
Leitch AR (1989) Formation and ultrastructure of a complex, multilayered wall around the oospore of Chara and Lamprothamnium (Characeae). Br Phycol J 24:229–236. https://doi.org/10.1080/00071618900650251 DOI
Limbach C, Hauslage J, Schäfer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040. https://doi.org/10.1104/pp.105.068106 PubMed DOI PMC
Limbach C, Staehelin LA, Sievers A, Braun M (2008) Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing Chara rhizoids. Planta 227:1101–1114. https://doi.org/10.1007/s00425-007-0684-y PubMed DOI
Lühring H, Witzemann V (1995) Internodal cells of the giant green alga Chara as an expression system for ion channels. FEBS Lett 361:65–69. https://doi.org/10.1016/0014-5793(95)00136-W PubMed DOI
McCourt RM, Karol KG (1996) Phylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL, sequences and morphology. Am J Bot 83:125–131. https://doi.org/10.1002/j.1537-2197.1996.tb13885.x DOI
McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666. https://doi.org/10.1016/j.tree.2004.09.013 PubMed DOI
Moody LA (2019) The 2D to 3D growth transition in the moss Physcomitrella patens. Curr Opin Plant Biol 47:88–95. https://doi.org/10.1016/j.pbi.2018.10.001 PubMed DOI
Morimatsu M, Nakamura A, Sumiyoshi H et al (2000) The molecular structure of the fastest myosin from green algae, Chara. Biochem Biophys Res Commun 270:147–152. https://doi.org/10.1006/bbrc.2000.2391 PubMed DOI
Mudrilov M, Ladeynova M, Grinberg M et al (2021) Electrical signaling of plants under abiotic stressors: transmission of stimulus-specific information. Int J Mol Sci 22:10715. https://doi.org/10.3390/ijms221910715 PubMed DOI PMC
Nagai R, Kamiya N (1977) Differential treatment of Chara cells with cytochalasin B with special reference to its effect on cytoplasmic streaming. Exp Cell Res 108:231–237. https://doi.org/10.1016/S0014-4827(77)80029-3 PubMed DOI
Nagai R, Rebhun LI (1966) Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res 14:571–589. https://doi.org/10.1016/S0022-5320(66)80083-7 PubMed DOI
Nakanishi Y, Matsuda N, Aizawa K et al (1999) Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochim Biophys Acta 141:245–250. https://doi.org/10.1016/S0005-2736(99)00037-1 DOI
Nishimura T, Mori S, Shikata H et al (2023) Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 381:1006–1010. https://doi.org/10.1126/science.adh9978 PubMed DOI
Nishiyama T, Sakayama H, de Vries J et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:448–464. https://doi.org/10.1016/j.cell.2018.06.033 PubMed DOI
Nothnagel EA, Barak LS, Sanger JW, Webb WW (1981) Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol 88:364–372. https://doi.org/10.1083/jcb.88.2.364 PubMed DOI
Olszewska MJ, Gernand D, Godlewski M, Kunachowicz A (1997) DNA methylation during antheridial filament development and spermiogenesis in Chara vulgaris (Charophyceae) analysed by in situ nick-translation driven by methylation-sensitive restriction enzymes. Eur J Phycol 32:287–291. https://doi.org/10.1080/09670269710001737209 DOI
Palevitz BA, Ash JF, Hepler PK (1974) Actin in the green alga, Nitella. Proc Natl Acad Sci USA 71:363–366 PubMed DOI PMC
Park SH, Kim H-S, Kalita PJ, Choi S-B (2020) Structural and functional similarities and differences in nucleolar Pumilio RNA-binding proteins between Arabidopsis and the charophyte Chara corallina. BMC Plant Biol 20:230. https://doi.org/10.1186/s12870-020-02444-x PubMed DOI PMC
Pertl-Obermeyer H, Lackner P, Schulze WX et al (2018) Dissecting the subcellular membrane proteome reveals enrichment of H+ (co-)transporters and vesicle trafficking proteins in acidic zones of Chara internodal cells. PLoS ONE 13:e0201480. https://doi.org/10.1371/journal.pone.0201480 PubMed DOI PMC
Phipps S, Delwiche CF, Bisson MA (2021) Salinity-induced changes in gene expression in the streptophyte alga Chara: the critical role of a rare Na+-ATPase. J Phycol 57:1004–1013. https://doi.org/10.1111/jpy.13166 PubMed DOI
Popłońska K, Kwiatkowska M, Stępiński D et al (2004) Immunocytochemical localization of ubiquitin and proteasomes in spermatids during spermiogenesis of Chara vulgaris (Charophyceae). Eur J Phycol 39:309–315. https://doi.org/10.1080/09670260410001710114 DOI
Proctor VW (1967) Storage and germination of Chara oospores. J Phycol 3:90–92. https://doi.org/10.1111/j.1529-8817.1967.tb04638.x PubMed DOI
Proctor VW (1970) Taxonomy of Chara braunii: an experimental approach. J Phycol 6:317–321. https://doi.org/10.1111/j.1529-8817.1970.tb02401.x DOI
Quade BN, Parker MD, Hoepflinger MC et al (2022) The molecular identity of the characean OH − transporter: a candidate related to the SLC4 family of animal pH regulators. Protoplasma 259:615–626. https://doi.org/10.1007/s00709-021-01677-3 PubMed DOI
Ray S, Pekkari S, Snoeijs P (2001) Oospore dimensions and wall ornamentation patterns in Swedish charophytes. Nord J Bot 21:207–224. https://doi.org/10.1111/j.1756-1051.2001.tb01359.x DOI
Ross MM (1959) Morphology and physiology of germination of Chara gymnopitys A. Braun. I. Development and morphology of the sporeling. Aust J Bot 7:1–11. https://doi.org/10.1071/bt9590001 DOI
Sabbatini MR, Argüello JA, Fernández OA, Bottini RA (1987) Dormancy and growth-inhibitor levels in oospores of Chara contraria A. Braun ex Kütz. (Charophyta). Aquat Bot 28:189–194. https://doi.org/10.1016/0304-3770(87)90040-4 DOI
Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472. https://doi.org/10.1146/annurev.ph.46.030184.002323 PubMed DOI
Sato M, Sakayama H, Sato M et al (2014) Characterization of sexual reproductive processes in Chara braunii (Charales, Charophyceae). Phycol Res 62:214–221. https://doi.org/10.1111/pre.12056 DOI
Scherp P, Hasenstein KH (2003) Microinjection - a tool to study gravitropism. Adv Space Res 31:2221–2227. https://doi.org/10.1016/S0273-1177(03)00248-5 PubMed DOI
Schmölzer PM, Höftberger M, Foissner I (2011) Plasma membrane domains participate in pH banding of Chara internodal cells. Plant Cell Physiol 52:1274–1288. https://doi.org/10.1093/pcp/pcr074 PubMed DOI PMC
Schneider SC, Pichler DE, Andersen T, Melzer A (2015) Light acclimation in submerged macrophytes: the roles of plant elongation, pigmentation and branch orientation differ among Chara species. Aquat Bot 120:121–128. https://doi.org/10.1016/j.aquabot.2014.05.002 DOI
Sederias J, Colman B (2007) The interaction of light and low temperature on breaking the dormancy of Chara vulgaris oospores. Aquat Bot 87:229–234. https://doi.org/10.1016/j.aquabot.2007.06.008 DOI
Shen EYF (1967a) Amitosis in Chara. Cytologia 32:481–488. https://doi.org/10.1508/cytologia.32.481 DOI
Shen EYF (1967b) Microspectrophotometric analysis of nuclear DNA in Chara zeylanica. J Cell Biol 35:377–384 PubMed DOI PMC
Shimmen T (2007) The sliding theory of cytoplasmic streaming: fifty years of progress. J Plant Res 120:31–43. https://doi.org/10.1007/s10265-006-0061-0 PubMed DOI
Sievers A, Kruse S, Kuo-Huang L-L, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179:275–278 PubMed DOI
Skurzyński P, Bociąg K (2009) The effect of environmental conditions on the germination of Chara rudis oospores (Characeae, Chlorophyta). Charophytes 1:61–67
Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol 27:21.4.1-21.4.13. https://doi.org/10.1002/0471143030.cb2104s27 DOI
Sommer A, Hoeftberger M, Foissner I (2021) Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. Protoplasma 258:711–728. https://doi.org/10.1007/s00709-021-01627-z PubMed DOI PMC
Stebbins GL, Hill GJC (1980) Did multicellular plants invade the land? Am Nat 115:342–353 DOI
Stross RG (1989) The temporal window of germination in oospores of Chara (Charophyceae) following primary dormancy in the laboratory. New Phytol 113:491–495. https://doi.org/10.1111/j.1469-8137.1989.tb00360.x DOI
Sun GH, Uyeda TQP, Kuroiwa T (1988) Destruction of organelle nuclei during spermatogenesis in Chara corallina examined by staining with DAPI and anti-DNA antibody. Protoplasma 144:185–188. https://doi.org/10.1007/BF01637252 DOI
Takatori S, Imahori K (1971) Light reactions in the control of oospore germination of Chara delicatula. Phycologia 10:221–228. https://doi.org/10.2216/i0031-8884-10-2-221.1 DOI
Tanabe Y, Hasebe M, Sekimoto H et al (2005) Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proc Natl Acad Sci USA 102:2436–2441. https://doi.org/10.1073/pnas.0409860102 PubMed DOI PMC
Taylor TN, Taylor EL, Krings M (2009) Chapter four – algae. In Paleobotany: the biology and evolution of fossil plants, 2nd edn. Academic press, pp 121–160 DOI
Tazawa M, Tsukaya H, Hayama T (1991) Transformation of protoplasmic droplets of Chara by ion injection. J Plant Physiol 138:317–321. https://doi.org/10.1016/S0176-1617(11)80294-4 DOI
Tominaga M, Kimura A, Yokota E et al (2013) Cytoplasmic streaming velocity as a plant size determinant. Dev Cell 27:345–352. https://doi.org/10.1016/j.devcel.2013.10.005 PubMed DOI
Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903. https://doi.org/10.1105/tpc.013169 PubMed DOI PMC
Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338. https://doi.org/10.1093/molbev/msk018 PubMed DOI
Umen JG (2014) Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb Perspect Biol 6:a016170–a016170. https://doi.org/10.1101/cshperspect.a016170 PubMed DOI PMC
Umrath K (1930) Untersuchungen über plasma und plasmaströmung an characeen. Protoplasma 9:576–597. https://doi.org/10.1007/BF01943373 DOI
Vermeer CP, Escher M, Portielje R, de Klein JJM (2003) Nitrogen uptake and translocation by Chara. Aquat Bot 76:245–258. https://doi.org/10.1016/S0304-3770(03)00056-1 DOI
Wang-Cahill F, Kiss JZ (1995) The statolith compartment in Chara rhizoids contains carbohydrate and protein. Am J Bot 82:220–229. https://doi.org/10.1002/j.1537-2197.1995.tb11490.x PubMed DOI
Wasteneys GO, Williamson RE (1991) Endoplasmic microtubules and nucleus-associated actin rings in Nitella internodal cells. Protoplasma 162:86–98. https://doi.org/10.1007/BF02562552 DOI
Wasteneys GO, Collings DA, Gunning BES et al (1996) Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands and chloroplast actin rings. Protoplasma 190:25–38. https://doi.org/10.1007/BF01281192 DOI
Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc 188:51–61. https://doi.org/10.1046/j.1365-2818.1977.2390796.x PubMed DOI
Wickett NJ, Mirarab S, Nguyen N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111:E4859–E4868. https://doi.org/10.1073/pnas.1323926111 PubMed DOI PMC
Williamson RE (1972) A light-microscope study of the action of cytochalasin b on the cells and isolated cytoplasm of the Characeae. J Cell Sci 10:811–819. https://doi.org/10.1242/jcs.10.3.811 PubMed DOI
Wodniok S, Brinkmann H, Glöckner G et al (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104. https://doi.org/10.1186/1471-2148-11-104 PubMed DOI PMC
Wojtczak A (2016) Immunocytochemical and immunogold analyses of histone H4 acetylation during Chara vulgaris spermiogenesis. Micron 82:86–93. https://doi.org/10.1016/j.micron.2015.12.008 PubMed DOI
Woodward AW, Bartel B (2018) Biology in bloom: a primer on the Arabidopsis thaliana model system. Genetics 208:1337–1349. https://doi.org/10.1534/genetics.118.300755 PubMed DOI PMC
Żabka A, Polit JT, Winnicki K et al (2016) PIN2-like proteins may contribute to the regulation of morphogenetic processes during spermatogenesis in Chara vulgaris. Plant Cell Rep 35:1655–1669. https://doi.org/10.1007/s00299-016-1979-x PubMed DOI PMC
Zhang Y, Jiao Y, Jiao H, Zhao H, Zhu YX (2017) Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol Biol Evol 34:640–653. https://doi.org/10.1093/molbev/msw263 PubMed DOI
Zhang S, Habets M, Breuninger H et al (2020) Evolutionary and functional analysis of a Chara plasma membrane H+-ATPase. Front Plant Sci 10:1707. https://doi.org/10.3389/fpls.2019.01707 PubMed DOI PMC
Zhong B, Liu L, Yan Z, Penny D (2013) Origin of land plants using the multispecies coalescent model. Trends Plant Sci 18:492–495. https://doi.org/10.1016/j.tplants.2013.04.009 PubMed DOI