Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores

. 2024 Jan 16 ; 30 (4) : e202303154. [epub] 20231127

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37905588

Grantová podpora
23-07066S Grantová Agentura České Republiky
19-20467Y Grantová Agentura České Republiky
A2_FCHI_2023_054 Vysoká Škola Chemicko-technologická v Praze

4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.

Zobrazit více v PubMed

G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184-1201.

G. Duran-Sampedro, I. Esnal, A. R. Agarrabeitia, J. Bañuelos Prieto, L. Cerdán, I. García-Moreno, A. Costela, I. Lopez-Arbeloa, M. J. Ortiz, Chem. Eur. J. 2014, 20, 2646-2653.

X.-F. Wang, S.-S. Yu, C. Wang, D. Xue, J. Xiao, Org. Biomol. Chem. 2016, 14, 7028-7037.

K. C. Dissanayake, P. O. Ebukuyo, Y. J. Dhahir, K. Wheeler, H. He, Chem. Commun. 2019, 55, 4973-4976.

J. Fischer, L. Mele, H. Serier-Brault, P. Nun, V. Coeffard, Eur. J. Org. Chem. 2019, 2019, 6352-6358.

K. Sitkowska, M. F. Hoes, M. M. Lerch, L. N. Lameijer, P. van der Meer, W. Szymański, B. L. Feringa, Chem. Commun. 2020, 56, 5480-5483.

N. Vohradská, E. M. Sánchez-Carnerero, T. Pastierik, C. Mazal, P. Klán, Chem. Commun. 2018, 54, 5558-5561.

D. Kand, P. Liu, M. X. Navarro, L. J. Fischer, L. Rousso-Noori, D. Friedmann-Morvinski, A. H. Winter, E. W. Miller, R. Weinstain, J. Am. Chem. Soc. 2020, 142, 4970-4974.

J. A. Peterson, C. Wijesooriya, E. J. Gehrmann, K. M. Mahoney, P. P. Goswami, T. R. Albright, A. Syed, A. S. Dutton, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2018, 140, 7343-7346.

Y. Ni, J. Wu, Org. Biomol. Chem. 2014, 12, 3774-3791.

Y. Xu, S. Lin, R. He, Y. Zhang, Q. Gao, D. K. P. Ng, J. Geng, Chem. Eur. J. 2021, 27, 11268-11272.

A. Takeda, T. Komatsu, H. Nomura, M. Naka, N. Matsuki, Y. Ikegaya, T. Terai, T. Ueno, K. Hanaoka, T. Nagano, Y. Urano, ChemBioChem 2016, 17, 1233-1240.

N. Rubinstein, P. Liu, E. W. Miller, R. Weinstain, Chem. Commun. 2015, 51, 6369-6372.

P. P. Goswami, A. Syed, C. L. Beck, T. R. Albright, K. M. Mahoney, R. Unash, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2015, 137, 3783-3786.

T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klán, J. Am. Chem. Soc. 2017, 139, 15168-15175.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2012, 42, 77-88.

E. Palao, T. Slanina, L. Muchová, T. Šolomek, L. Vítek, P. Klán, J. Am. Chem. Soc. 2016, 138, 126-133.

M. R. Momeni, A. Brown, J. Chem. Theory Comput. 2015, 11, 2619-2632.

R. P. Sabatini, T. M. McCormick, T. Lazarides, K. C. Wilson, R. Eisenberg, D. W. McCamant, J. Phys. Chem. Lett. 2011, 2, 223-227.

X. Miao, W. Hu, T. He, H. Tao, Q. Wang, R. Chen, L. Jin, H. Zhao, X. Lu, Q. Fan, W. Huang, Chem. Sci. 2019, 10, 3096-3102.

V. Postils, F. Ruipérez, D. Casanova, J. Chem. Theory Comput. 2021, 17, 5825-5838.

Y. Dong, P. Kumar, P. Maity, I. Kurganskii, S. Li, A. Elmali, J. Zhao, D. Escudero, H. Wu, A. Karatay, O. F. Mohammed, M. Fedin, Phys. Chem. Chem. Phys. 2021, 23, 8641-8652.

M. Wasif Baig, M. Pederzoli, M. Kývala, L. Cwiklik, J. Pittner, J. Phys. Chem. B 2021, 125, 11617-11627.

J. T. Ly, K. F. Presley, T. M. Cooper, L. A. Baldwin, M. J. Dalton, T. A. Grusenmeyer, Phys. Chem. Chem. Phys. 2021, 23, 12033-12044.

K. Krumova, G. Cosa, J. Am. Chem. Soc. 2010, 132, 17560-17569.

M. M. Boucher, M. H. Furigay, P. K. Quach, C. S. Brindle, Org. Process Res. Dev. 2017, 21, 1394-1403.

A. Poryvai, M. Galkin, V. Shvadchak, T. Slanina, Angew. Chem. Int. Ed. 2022, 61, e202205855.

W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing, H. Zhang, RSC Adv. 2013, 3, 13417-13421.

E. Palao, T. Slanina, P. Klán, Chem. Commun. 2016, 52, 11951-11954.

H. Wang, F. R. Fronczek, M. G. H. Vicente, K. M. Smith, J. Org. Chem. 2014, 79, 10342-10352.

T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127, 12162-12163.

T. Sato, Y. Hamada, M. Sumikawa, S. Araki, H. Yamamoto, Ind. Eng. Chem. Res. 2014, 53, 19331-19337.

R. C. Belloli, M. A. Whitehead, R. H. Wollenberg, V. A. LaBahn, J. Org. Chem. 1974, 39, 2128-2130.

E. V. Sitzmann, J. Langan, K. B. Eisenthal, J. Am. Chem. Soc. 1984, 106, 1868-1869.

Z. Wang, A. Toffoletti, Y. Hou, J. Zhao, A. Barbon, B. Dick, Chem. Sci. 2021, 12, 2829-2840.

Z. Lin, A. W. Kohn, T. Van Voorhis, J. Phys. Chem. C 2020, 124, 3925-3938.

S. G. Awuah, J. Polreis, V. Biradar, Y. You, Org. Lett. 2011, 13, 3884-3887.

J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904-8939.

S. Chibani, A. D. Laurent, B. Le Guennic, D. Jacquemin, J. Chem. Theory Comput. 2014, 10, 4574-4582.

S. Banerjee, R. T. Kuznetsova, D. B. Papkovsky, Sens. Actuators B 2015, 212, 229-234.

A. C. Albrecht, J. Chem. Phys. 1963, 38, 354-365.

J. Tatchen, N. Gilka, C. M. Marian, Phys. Chem. Chem. Phys. 2007, 9, 5209-5221.

T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 2018, 118, 6975-7025.

A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2013, 9, 4097-4115.

R. Tovtik, E. Muchová, L. Štacková, P. Slavíček, P. Klán, J. Org. Chem. 2023, 88, 6716-6728.

P. Löwdin, J. Chem. Phys. 1950, 18, 365-375.

S. Aloïse, C. Ruckebusch, L. Blanchet, J. Réhault, G. Buntinx, J.-P. Huvenne, J. Phys. Chem. A 2008, 112, 224-231.

M. A. El-Sayed, Acc. Chem. Res. 1968, 1, 8-16.

B. Wu, H. Su, A. Cheng, X. Zhang, T. Wang, G. Zhang, Cell Rep. Phys. Sci. 2023, 4, 101245.

M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theory Comput. 2011, 7, 1253-1258.

R. Mitrić, J. Petersen, V. Bonačić-Koutecký, Phys. Rev. A 2009, 79, 053416.

M. Kamiya, T. Taketsugu, J. Comput. Chem. 2019, 40, 456-463.

G. Granucci, M. Persico, G. Spighi, J. Chem. Phys. 2012, 137, 22A501.

J. Suchan, J. Janoš, P. Slavíček, J. Chem. Theory Comput. 2020, 16, 5809-5820.

G. Cui, W. Thiel, J. Chem. Phys. 2014, 141, 124101.

M. Pederzoli, M. Wasif Baig, M. Kývala, J. Pittner, L. Cwiklik, J. Chem. Theory Comput. 2019, 15, 5046-5057.

F. Plasser, S. Gómez, M. F. S. J. Menger, S. Mai, L. González, Phys. Chem. Chem. Phys. 2018, 21, 57-69.

J. P. Zobel, M. Heindl, F. Plasser, S. Mai, L. González, Acc. Chem. Res. 2021, 54, 3760-3771.

T. I. U. of P. and A. Chemistry (IUPAC), “IUPAC - El-Sayed rules (ET07369),” DOI 10.1351/goldbook.ET07369 can be found under https://goldbook.iupac.org/terms/view/ET07369, n.d.

A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405-3416.

B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820.

D. Feller, J. Comput. Chem. 1996, 17, 1571-1586.

K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045-1052.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114, 10252-10264.

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908-919.

S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. n.d., 1980, 1200-1211.

F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. n.d., 2020, 224108.

“Q-Chem 4.3 User's Manual: Minimum-Energy Crossing Points,” can be found under https://manual.q-chem.com/4.3/sect-MECP.html, n.d.

Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184-215.

B. Dansou, C. Pichon, R. Dhal, E. Brown, S. Mille, Eur. J. Org. Chem. 2000, 2000, 1527-1533.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...