Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
23-07066S
Grantová Agentura České Republiky
19-20467Y
Grantová Agentura České Republiky
A2_FCHI_2023_054
Vysoká Škola Chemicko-technologická v Praze
- Keywords
- BODIPYs, El-Sayed rules, intersystem crossing, spin-vibronic couplings, triplet chromophores,
- Publication type
- Journal Article MeSH
4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.
See more in PubMed
G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184-1201.
G. Duran-Sampedro, I. Esnal, A. R. Agarrabeitia, J. Bañuelos Prieto, L. Cerdán, I. García-Moreno, A. Costela, I. Lopez-Arbeloa, M. J. Ortiz, Chem. Eur. J. 2014, 20, 2646-2653.
X.-F. Wang, S.-S. Yu, C. Wang, D. Xue, J. Xiao, Org. Biomol. Chem. 2016, 14, 7028-7037.
K. C. Dissanayake, P. O. Ebukuyo, Y. J. Dhahir, K. Wheeler, H. He, Chem. Commun. 2019, 55, 4973-4976.
J. Fischer, L. Mele, H. Serier-Brault, P. Nun, V. Coeffard, Eur. J. Org. Chem. 2019, 2019, 6352-6358.
K. Sitkowska, M. F. Hoes, M. M. Lerch, L. N. Lameijer, P. van der Meer, W. Szymański, B. L. Feringa, Chem. Commun. 2020, 56, 5480-5483.
N. Vohradská, E. M. Sánchez-Carnerero, T. Pastierik, C. Mazal, P. Klán, Chem. Commun. 2018, 54, 5558-5561.
D. Kand, P. Liu, M. X. Navarro, L. J. Fischer, L. Rousso-Noori, D. Friedmann-Morvinski, A. H. Winter, E. W. Miller, R. Weinstain, J. Am. Chem. Soc. 2020, 142, 4970-4974.
J. A. Peterson, C. Wijesooriya, E. J. Gehrmann, K. M. Mahoney, P. P. Goswami, T. R. Albright, A. Syed, A. S. Dutton, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2018, 140, 7343-7346.
Y. Ni, J. Wu, Org. Biomol. Chem. 2014, 12, 3774-3791.
Y. Xu, S. Lin, R. He, Y. Zhang, Q. Gao, D. K. P. Ng, J. Geng, Chem. Eur. J. 2021, 27, 11268-11272.
A. Takeda, T. Komatsu, H. Nomura, M. Naka, N. Matsuki, Y. Ikegaya, T. Terai, T. Ueno, K. Hanaoka, T. Nagano, Y. Urano, ChemBioChem 2016, 17, 1233-1240.
N. Rubinstein, P. Liu, E. W. Miller, R. Weinstain, Chem. Commun. 2015, 51, 6369-6372.
P. P. Goswami, A. Syed, C. L. Beck, T. R. Albright, K. M. Mahoney, R. Unash, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2015, 137, 3783-3786.
T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klán, J. Am. Chem. Soc. 2017, 139, 15168-15175.
A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2012, 42, 77-88.
E. Palao, T. Slanina, L. Muchová, T. Šolomek, L. Vítek, P. Klán, J. Am. Chem. Soc. 2016, 138, 126-133.
M. R. Momeni, A. Brown, J. Chem. Theory Comput. 2015, 11, 2619-2632.
R. P. Sabatini, T. M. McCormick, T. Lazarides, K. C. Wilson, R. Eisenberg, D. W. McCamant, J. Phys. Chem. Lett. 2011, 2, 223-227.
X. Miao, W. Hu, T. He, H. Tao, Q. Wang, R. Chen, L. Jin, H. Zhao, X. Lu, Q. Fan, W. Huang, Chem. Sci. 2019, 10, 3096-3102.
V. Postils, F. Ruipérez, D. Casanova, J. Chem. Theory Comput. 2021, 17, 5825-5838.
Y. Dong, P. Kumar, P. Maity, I. Kurganskii, S. Li, A. Elmali, J. Zhao, D. Escudero, H. Wu, A. Karatay, O. F. Mohammed, M. Fedin, Phys. Chem. Chem. Phys. 2021, 23, 8641-8652.
M. Wasif Baig, M. Pederzoli, M. Kývala, L. Cwiklik, J. Pittner, J. Phys. Chem. B 2021, 125, 11617-11627.
J. T. Ly, K. F. Presley, T. M. Cooper, L. A. Baldwin, M. J. Dalton, T. A. Grusenmeyer, Phys. Chem. Chem. Phys. 2021, 23, 12033-12044.
K. Krumova, G. Cosa, J. Am. Chem. Soc. 2010, 132, 17560-17569.
M. M. Boucher, M. H. Furigay, P. K. Quach, C. S. Brindle, Org. Process Res. Dev. 2017, 21, 1394-1403.
A. Poryvai, M. Galkin, V. Shvadchak, T. Slanina, Angew. Chem. Int. Ed. 2022, 61, e202205855.
W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing, H. Zhang, RSC Adv. 2013, 3, 13417-13421.
E. Palao, T. Slanina, P. Klán, Chem. Commun. 2016, 52, 11951-11954.
H. Wang, F. R. Fronczek, M. G. H. Vicente, K. M. Smith, J. Org. Chem. 2014, 79, 10342-10352.
T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127, 12162-12163.
T. Sato, Y. Hamada, M. Sumikawa, S. Araki, H. Yamamoto, Ind. Eng. Chem. Res. 2014, 53, 19331-19337.
R. C. Belloli, M. A. Whitehead, R. H. Wollenberg, V. A. LaBahn, J. Org. Chem. 1974, 39, 2128-2130.
E. V. Sitzmann, J. Langan, K. B. Eisenthal, J. Am. Chem. Soc. 1984, 106, 1868-1869.
Z. Wang, A. Toffoletti, Y. Hou, J. Zhao, A. Barbon, B. Dick, Chem. Sci. 2021, 12, 2829-2840.
Z. Lin, A. W. Kohn, T. Van Voorhis, J. Phys. Chem. C 2020, 124, 3925-3938.
S. G. Awuah, J. Polreis, V. Biradar, Y. You, Org. Lett. 2011, 13, 3884-3887.
J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904-8939.
S. Chibani, A. D. Laurent, B. Le Guennic, D. Jacquemin, J. Chem. Theory Comput. 2014, 10, 4574-4582.
S. Banerjee, R. T. Kuznetsova, D. B. Papkovsky, Sens. Actuators B 2015, 212, 229-234.
A. C. Albrecht, J. Chem. Phys. 1963, 38, 354-365.
J. Tatchen, N. Gilka, C. M. Marian, Phys. Chem. Chem. Phys. 2007, 9, 5209-5221.
T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 2018, 118, 6975-7025.
A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 2013, 9, 4097-4115.
R. Tovtik, E. Muchová, L. Štacková, P. Slavíček, P. Klán, J. Org. Chem. 2023, 88, 6716-6728.
P. Löwdin, J. Chem. Phys. 1950, 18, 365-375.
S. Aloïse, C. Ruckebusch, L. Blanchet, J. Réhault, G. Buntinx, J.-P. Huvenne, J. Phys. Chem. A 2008, 112, 224-231.
M. A. El-Sayed, Acc. Chem. Res. 1968, 1, 8-16.
B. Wu, H. Su, A. Cheng, X. Zhang, T. Wang, G. Zhang, Cell Rep. Phys. Sci. 2023, 4, 101245.
M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theory Comput. 2011, 7, 1253-1258.
R. Mitrić, J. Petersen, V. Bonačić-Koutecký, Phys. Rev. A 2009, 79, 053416.
M. Kamiya, T. Taketsugu, J. Comput. Chem. 2019, 40, 456-463.
G. Granucci, M. Persico, G. Spighi, J. Chem. Phys. 2012, 137, 22A501.
J. Suchan, J. Janoš, P. Slavíček, J. Chem. Theory Comput. 2020, 16, 5809-5820.
G. Cui, W. Thiel, J. Chem. Phys. 2014, 141, 124101.
M. Pederzoli, M. Wasif Baig, M. Kývala, J. Pittner, L. Cwiklik, J. Chem. Theory Comput. 2019, 15, 5046-5057.
F. Plasser, S. Gómez, M. F. S. J. Menger, S. Mai, L. González, Phys. Chem. Chem. Phys. 2018, 21, 57-69.
J. P. Zobel, M. Heindl, F. Plasser, S. Mai, L. González, Acc. Chem. Res. 2021, 54, 3760-3771.
T. I. U. of P. and A. Chemistry (IUPAC), “IUPAC - El-Sayed rules (ET07369),” DOI 10.1351/goldbook.ET07369 can be found under https://goldbook.iupac.org/terms/view/ET07369, n.d.
A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405-3416.
B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820.
D. Feller, J. Comput. Chem. 1996, 17, 1571-1586.
K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045-1052.
Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114, 10252-10264.
D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908-919.
S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. n.d., 1980, 1200-1211.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. n.d., 2020, 224108.
“Q-Chem 4.3 User's Manual: Minimum-Energy Crossing Points,” can be found under https://manual.q-chem.com/4.3/sect-MECP.html, n.d.
Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184-215.
B. Dansou, C. Pichon, R. Dhal, E. Brown, S. Mille, Eur. J. Org. Chem. 2000, 2000, 1527-1533.