Retinal venular vessel diameters are smaller during ten days of bed rest
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37935771
PubMed Central
PMC10630473
DOI
10.1038/s41598-023-46177-x
PII: 10.1038/s41598-023-46177-x
Knihovny.cz E-resources
- MeSH
- Retinal Artery * diagnostic imaging MeSH
- Fluorescein Angiography MeSH
- Bed Rest adverse effects MeSH
- Humans MeSH
- Retinal Vessels diagnostic imaging MeSH
- Retinal Vein * diagnostic imaging MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Older individuals experience cardiovascular dysfunction during extended bedridden hospital or care home stays. Bed rest is also used as a model to simulate accelerated vascular deconditioning occurring during spaceflight. This study investigates changes in retinal microcirculation during a ten-day bed rest protocol. Ten healthy young males (22.9 ± 4.7 years; body mass index: 23.6 ± 2.5 kg·m-2) participated in a strictly controlled repeated-measures bed rest study lasting ten days. High-resolution images were obtained using a hand-held fundus camera at baseline, daily during the 10 days of bed rest, and 1 day after re-ambulation. Retinal vessel analysis was performed using a semi-automated software system to obtain metrics for retinal arteriolar and venular diameters, central retinal artery equivalent and central retinal vein equivalent, respectively. Data analysis employed a mixed linear model. At the end of the bed rest period, a significant decrease in retinal venular diameter was observed, indicated by a significantly lower central retinal vein equivalent (from 226.1 µm, CI 8.90, to 211.4 µm, CI 8.28, p = .026), while no significant changes in central retinal artery equivalent were noted. Prolonged bed rest confinement resulted in a significant (up to 6.5%) reduction in retinal venular diameter. These findings suggest that the changes in retinal venular diameter during bedrest may be attributed to plasma volume losses and reflect overall (cardio)-vascular deconditioning.
Centre for Environmental Sciences Hasselt University Hasselt Belgium
Department of Biomedical Sciences University of Padua Padua Italy
Department of Psychiatry University Hospital Münster Münster Germany
Institute for Kinesiology Research Science and Research Centre Koper Koper Slovenia
Integrative Health Alma Mater Europaea Maribor Maribor Slovenia
See more in PubMed
Malmivaara A, Häkkinen U, Aro T, Heinrichs ML, Koskenniemi L, Kuosma E, et al. The treatment of acute low back pain—Bed rest, exercises, or ordinary activity? N. Engl. J. Med. 1995;332(6):351–5. doi: 10.1056/NEJM199502093320602. PubMed DOI
Waddell G, Feder G, Lewis M. Systematic reviews of bed rest and advice to stay active for acute low back pain. Br. J. Gen. Pract. 1997;47(423):647–52. PubMed PMC
Thomovsky SA. The physiology associated with “Bed Rest” and inactivity and how it may relate to the veterinary patient with spinal cord injury and physical rehabilitation. Front. Vet. Sci. 2021;8:601914. doi: 10.3389/fvets.2021.601914. PubMed DOI PMC
Parola V, Neves H, Duque FM, Bernardes RA, Cardoso R, Mendes CA, et al. Rehabilitation programs for bedridden patients with prolonged immobility: A scoping review protocol. Int. J. Environ. Res. Public Health. 2021;18(22):12033. doi: 10.3390/ijerph182212033. PubMed DOI PMC
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017 doi: 10.3389/fphys.2017.00803. PubMed DOI PMC
Goswami N. Spaceflight meets geriatrics! Front. Physiol. 2018 doi: 10.3389/conf.fphys.2018.26.00022. PubMed DOI PMC
Goswami N, Batzel JJ, Valenti G. Human Systems Physiology. Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers; 2015.
Goswami N, White O, Blaber A, Evans J, van Loon JJWA, Clement G. Human physiology adaptation to altered gravity environments. Acta Astronaut. 2021;189:216–21. doi: 10.1016/j.actaastro.2021.08.023. DOI
Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J. Appl. Physiol. 2016;120(8):891–903. doi: 10.1152/japplphysiol.00935.2015. PubMed DOI
Mulavara AP, Peters BT, Miller CA, Kofman IS, Reschke MF, Taylor LC, et al. Physiological and functional alterations after spaceflight and bed rest. Med. Sci. Sports Exerc. 2018;50(9):1961–1980. doi: 10.1249/MSS.0000000000001615. PubMed DOI PMC
Patel K, Rössler A, Lackner HK, Trozic I, Laing C, Lorr D, et al. Effect of postural changes on cardiovascular parameters across gender. Medicine (Baltimore) 2016;95(28):e4149. doi: 10.1097/MD.0000000000004149. PubMed DOI PMC
Convertino VA. Cardiovascular consequences of bed rest: Effect on maximal oxygen uptake. Med. Sci. Sports Exerc. 1997;29(2):191–196. doi: 10.1097/00005768-199702000-00005. PubMed DOI
Blaber AP, Hinghofer-Szalkay H, Goswami N. Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 2013;84(1):59–64. doi: 10.3357/ASEM.3424.2013. PubMed DOI
Chobanian AV, Lille RD, Tercyak A, Blevins P. The metabolic and hemodynamic effects of prolonged bed rest in normal subjects. Circulation. 1974;49(3):551–9. doi: 10.1161/01.CIR.49.3.551. PubMed DOI
Levine BD, Zuckerman JH, Pawelczyk JA. Cardiac atrophy after bed-rest deconditioning. Circulation. 1997;96(2):517–25. doi: 10.1161/01.CIR.96.2.517. PubMed DOI
Convertino VA. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity. Med. Sci. Sports Exerc. 1996;28(10):45. doi: 10.1097/00005768-199610000-00033. PubMed DOI
Fortney SM, Turner C, Steinmann L, Driscoll T, Alfrey C. Blood volume responses of men and women to bed rest. J. Clin. Pharmacol. 1994;34(5):434–9. doi: 10.1002/j.1552-4604.1994.tb04984.x. PubMed DOI
Iwasaki KI, Zhang R, Perhonen MA, Zuckerman JH, Levine BD. Reduced baroreflex control of heart period after bed rest is normalized by acute plasma volume restoration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287(5):R1256–62. doi: 10.1152/ajpregu.00613.2002. PubMed DOI
Convertino VA, Doerr DF, Ludwig DA, Vernikos J. Effect of simulated microgravity on cardiopulmonary baroreflex control of forearm vascular resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994;266(6):R1962–9. doi: 10.1152/ajpregu.1994.266.6.r1962. PubMed DOI
Mahdy A, Stradner M, Roessler A, Brix B, Lackner A, Salon A, et al. A pilot study: Hypertension, endothelial dysfunction and retinal microvasculature in rheumatic autoimmune diseases. J. Clin. Med. 2021;10(18):4067. doi: 10.3390/jcm10184067. PubMed DOI PMC
Marincowitz C, Webster I, Westcott C, Strijdom H, Goswami N, De BP, et al. Vascular health assessment with flow-mediated dilatation and retinal image analysis: A pilot study in an adult population from Cape Town. Cardiovasc. J. Afr. 2021;32(3):133–40. doi: 10.5830/CVJA-2020-046. PubMed DOI PMC
Louwies T, IntPanis L, Alders T, Bonné K, Goswami N, Nawrot TS, et al. Microvascular reactivity in rehabilitating cardiac patients based on measurements of retinal blood vessel diameters. Microvasc. Res. 2019;124:25–29. doi: 10.1016/j.mvr.2019.02.006. PubMed DOI
Hosák L, Zeman T, Studnička J, Stepanov A, Ustohal L, Michalec M, et al. Retinal arteriolar and venular diameters are widened in patients with schizophrenia. Psychiatry Clin. Neurosci. 2020;74(11):619–21. doi: 10.1111/pcn.13123. PubMed DOI
Bird B, Stawicki SP. Anatomy, head and neck, ophthalmic arteries. In: Bird B, Stawicki SP, editors. StatPearls, Treasure Island (FL) StatPearls Publishing; 2022. PubMed
De Ciuceis C, Porteri E, Rizzoni D, Rizzardi N, Paiardi S, Boari GEM, et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am. J. Hypertens. 2007;20(8):846–52. doi: 10.1016/j.amjhyper.2007.03.016. PubMed DOI
Rizzoni D, Porteri E, Boari GEM, De Ciuceis C, Sleiman I, Muiesan ML, et al. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108(18):2230–5. doi: 10.1161/01.CIR.0000095031.51492.C5. PubMed DOI
Wong TY, Klein R, Sharrett AR, Duncan BB, Couper DJ, Klein BEK, et al. Retinal arteriolar diameter and risk for hypertension. Ann. Intern. Med. 2004;140(4):248–55. doi: 10.7326/0003-4819-140-4-200402170-00006. PubMed DOI
Ikram MK, Witteman JCM, Vingerling JR, Breteler MMB, Hofman A, de Jong PTVM. Retinal vessel diameters and risk of hypertension. Hypertension. 2006;47(2):189–94. doi: 10.1161/01.HYP.0000199104.61945.33. PubMed DOI
Tanabe Y, Kawasaki R, Wang JJ, Wong TY, Mitchell P, Daimon M, et al. Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: The funagata study. Microcirculation. 2010;17(2):94–102. doi: 10.1111/j.1549-8719.2009.00006.x. PubMed DOI
Nguyen TT, Wong TY. Retinal vascular manifestations of metabolic disorders. Trends Endocrinol. Metab. 2006;17(7):262–8. doi: 10.1016/j.tem.2006.07.006. PubMed DOI
Wong TY, Mitchell P. Hypertensive retinopathy. N. Engl. J. Med. 2004;351(22):2310–7. doi: 10.1056/NEJMra032865. PubMed DOI
Wong T, Mitchell P. The eye in hypertension. Lancet. 2007;369(9559):425–35. doi: 10.1016/S0140-6736(07)60198-6. PubMed DOI
Wong TY, Kamineni A, Klein R, Sharrett AR, Klein BE, Siscovick DS, et al. Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: The cardiovascular health study. Arch. Intern. Med. 2006;166(21):2388–94. doi: 10.1001/archinte.166.21.2388. PubMed DOI
Wang JJ, Liew G, Klein R, Rochtchina E, Knudtson MD, Klein BEK, et al. Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. Eur. Heart J. 2007;28(16):1984–92. doi: 10.1093/eurheartj/ehm221. PubMed DOI
Taibbi G, Young M, Vyas RJ, Murray MC, Lim S, Predovic M, et al. Opposite response of blood vessels in the retina to 6° head-down tilt and long-duration microgravity. NPJ Microgravity. 2021;7:38. doi: 10.1038/s41526-021-00165-5. PubMed DOI PMC
Vyas RJ, Young M, Murray MC, Predovic M, Lim S, Jacobs NM, et al. Decreased vascular patterning in the retinas of astronaut crew members as new measure of ocular damage in spaceflight-associated neuro-ocular syndrome. Investig. Ophthalmol. Vis. Sci. 2020;61(14):34. doi: 10.1167/iovs.61.14.34. PubMed DOI PMC
Louwies T, JakiMekjavic P, Cox B, Eiken O, Mekjavic IB, Kounalakis S, et al. Separate and combined effects of hypoxia and horizontal bed rest on retinal blood vessel diameters. Investig. Ophthalmol. Vis. Sci. 2016;57(11):4927–32. doi: 10.1167/iovs.16-19968. PubMed DOI
Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, et al. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am. J. Ophthalmol. 1993;115(3):347–50. doi: 10.1016/S0002-9394(14)73586-X. PubMed DOI
Baer RM, Hill DW. Retinal vessel responses to passive tilting. Eye (Lond.) 1990;4(Pt 5):751–756. doi: 10.1038/eye.1990.107. PubMed DOI
Biolo G, Agostini F, Simunic B, Sturma M, Torelli L, Preiser JC, et al. Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest. Am. J. Clin. Nutr. 2008;88(4):950–958. doi: 10.1093/ajcn/88.4.950. PubMed DOI
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, et al. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J. Physiol. 2021;599(12):3037–61. doi: 10.1113/JP281365. PubMed DOI PMC
Khan A, Boever PD, Gerrits N, Akhtar N, Saqqur M, Ponirakis G, et al. Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke. PLoS One. 2022;17(5):e0267837. doi: 10.1371/journal.pone.0267837. PubMed DOI PMC
De Boever P, Louwies T, Provost E, IntPanis L, Nawrot TS. Fundus photography as a convenient tool to study microvascular responses to cardiovascular disease risk factors in epidemiological studies. J. Vis. Exp. 2014;92:e51904. PubMed PMC
Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BEK. Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 2003;27(3):143–149. doi: 10.1076/ceyr.27.3.143.16049. PubMed DOI
Taibbi G, Young M, Vyas RJ, Murray MC, Lim S, Predovic M, et al. Opposite response of blood vessels in the retina to 6° head-down tilt and long-duration microgravity. NPJ Microgravity. 2021;7:38. doi: 10.1038/s41526-021-00165-5. PubMed DOI PMC
Vyas RJ, Young M, Murray MC, Predovic M, Lim S, Jacobs NM, et al. Decreased vascular patterning in the retinas of astronaut crew members as new measure of ocular damage in spaceflight-associated neuro-ocular syndrome. Investig. Ophthalmol. Vis. Sci. 2020;61(14):34. doi: 10.1167/iovs.61.14.34. PubMed DOI PMC
Louwies T, JakiMekjavic P, Cox B, Eiken O, Mekjavic IB, Kounalakis S, et al. Separate and combined effects of hypoxia and horizontal bed rest on retinal blood vessel diameters. Investig. Ophthalmol. Vis. Sci. 2016;57(11):4927–32. doi: 10.1167/iovs.16-19968. PubMed DOI
Mader COLTH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, et al. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am. J. Ophthalmol. 1993;115(3):347–50. doi: 10.1016/S0002-9394(14)73586-X. PubMed DOI
Baer RM, Hill DW. Retinal vessel responses to passive tilting. Eye (Lond.) 1990;4(Pt 5):751–756. doi: 10.1038/eye.1990.107. PubMed DOI
Marshall-Goebel K, Laurie SS, Alferova IV, Arbeille P, Auñón-Chancellor SM, Ebert DJ, et al. Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Netw. Open. 2019;2(11):e1915011. doi: 10.1001/jamanetworkopen.2019.15011. PubMed DOI PMC
Harris K, Laws JM, Elias A, Green DA, Goswami N, Jordan J, et al. Search for venous endothelial biomarkers heralding venous thromboembolism in space: A qualitative systematic review of terrestrial studies. Front. Physiol. 2022 doi: 10.3389/fphys.2022.885183. PubMed DOI PMC
Harris KM, Arya R, Elias A, Weber T, Green DA, Greaves DK, et al. Pathophysiology, risk, diagnosis, and management of venous thrombosis in space: Where are we now? NPJ Microgravity. 2023;9(1):17. doi: 10.1038/s41526-023-00260-9. PubMed DOI PMC
Harris KM, Weber T, Greaves D, Green DA, Goswami N, Petersen LG. Going against the flow: Are venous thromboembolism and impaired cerebral drainage critical risks for spaceflight? J. Appl. Physiol. 2022;132(1):270–273. doi: 10.1152/japplphysiol.00425.2021. PubMed DOI PMC
Du J, Cui J, Yang J, Wang P, Zhang L, Luo B, et al. Alterations in cerebral hemodynamics during microgravity: A literature review. Med. Sci. Monit. 2021;27:e928108–1–e928108–9. doi: 10.12659/MSM.928108. PubMed DOI PMC
Gazenko OG, Genin AM, Egorov AD. Summary of medical investigations in the U.S.S.R. manned space missions. Acta Astronaut. 1981;8(9):907–17. doi: 10.1016/0094-5765(81)90061-8. PubMed DOI
Waha JE, Goswami N, Schlagenhauf A, Leschnik B, Koestenberger M, Reibnegger G, et al. Effects of exercise and nutrition on the coagulation system during bedrest immobilization. Medicine (Baltimore) 2015;94(38):e1555. doi: 10.1097/MD.0000000000001555. PubMed DOI PMC
Goswami N, Kavcic V, Marusic U, Simunic B, Rössler A, Hinghofer-Szalkay H, et al. Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: a pilot study. Clin. Interv. Aging. 2015;10:453–459. doi: 10.2147/CIA.S76028. PubMed DOI PMC
Cvirn G, Waha JE, Ledinski G, Schlagenhauf A, Leschnik B, Koestenberger M, et al. Bed rest does not induce hypercoagulability. Eur. J. Clin. Investig. 2015;45(1):63–69. doi: 10.1111/eci.12383. PubMed DOI
Goswami N, van Loon JJWA, Roessler A, Blaber AP, White O. Editorial: Gravitational physiology, aging and medicine. Front. Physiol. 2019;10:1338. doi: 10.3389/fphys.2019.01338. PubMed DOI PMC
Riva CE, Grunwald JE, Sinclair SH, Petrig BL. Blood velocity and volumetric flow rate in human retinal vessels. Investig. Ophthalmol. Vis. Sci. 1985;26(8):1124–1132. PubMed
Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ. Blood flow in the normal human retina. Investig. Ophthalmol. Vis Sci. 1989;30(1):58–65. PubMed
Garhofer G, Werkmeister R, Dragostinoff N, Schmetterer L. Retinal blood flow in healthy young subjects. Investig. Ophthalmol. Vis. Sci. 2012;53(2):698–703. doi: 10.1167/iovs.11-8624. PubMed DOI