Population genetics and external proficiency testing for HLA disease associations

. 2023 ; 14 () : 1268705. [epub] 20231023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37937194

Numerous associations of HLA variants with susceptibility to diseases, namely, those with an immunopathological component, have been described to date. The strongest HLA associations were incorporated into the standard algorithms for the diagnostics. Disease-associated HLA variants are routinely detected by various techniques including DNA-based assays. For the identification of HLA markers or their combinations with the highest diagnostic value and those with frequent clinical indications (e.g., HLA-B*27, -B*57:01, -DQ2/-DQ8, -DQB1*06:02), diagnostic tests that focus on a single or limited number of specific HLA antigens/alleles, have already been developed; the use of complete typing for particular HLA loci is a relevant alternative. Importantly, external proficiency testing (EPT) became an integral part of good laboratory practice for HLA disease associations in accredited laboratories and not only supports correct "technical" identification of the associated HLA variants, but also adequate interpretation of the results to the clinicians. In the present article selected aspects of EPT for HLA disease associations related to population genetics are reviewed and discussed with the emphasis on the optimal level of HLA typing resolution, population-based differences in disease associated HLA alleles within the allelic group, distribution and linkage disequilibrium of HLA alleles in particular populations and interpretation of the presence of less common HLA variants/haplotypes. In conclusion, the laboratories that perform and interpret the tests to the clinicians, producers of the certified diagnostics and EPT providers should consider, among others, the genetic characteristics of the populations in order to optimise the diagnostic value of the tests for disease-associated HLA variants.

Zobrazit více v PubMed

Albrecht J., Müller H. A. (1987). HLA-B27 typing by use of flow cytofluorometry. Clin. Chem. 33, 1619–1623. 10.1093/clinchem/33.9.1619 PubMed DOI

Altman D. G., Bland J. M. (1994). Diagnostic tests 2: predictive values. BMJ 309, 102. 10.1136/bmj.309.6947.102 PubMed DOI PMC

American Society for Histocompatibility and Immunogenetics (2023). Standards for accredited laboratories 2022. Available at: https://www.ashi-hla.org/page/standards (Accessed August 30, 2023).

Arrieta-Bolaños E., Hernández-Zaragoza D. I., Barquera R. (2023). An HLA map of the world: a comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front. Genet. 14, 866407. 10.3389/fgene.2023.866407 PubMed DOI PMC

Asia-Pacific Histocompatibility and Immunogenetics Association (2023). The quality assurance program. Available at: https://www.aphia.org.au/aphia-qap (Accessed August 30, 2023).

Baisch J. M., Weeks T., Giles R., Hoover M., Stastny P., Capra J. D. (1990). Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N. Engl. J. Med. 322, 1836–1841. 10.1056/NEJM199006283222602 PubMed DOI

Barker D. J., Maccari G., Georgiou X., Cooper M. A., Flicek P., Robinson J., et al. (2023). The IPD-IMGT/HLA database. Nucleic Acids Res. 51, D1053–D1060. 10.1093/nar/gkac1011 PubMed DOI PMC

Brewerton D. A., Hart F. D., Nicholls A., Caffrey M., James D. C., Sturrock R. D. (1973). Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907. 10.1016/s0140-6736(73)91360-3 PubMed DOI

Ciacchi L., Farenc C., Dahal-Koirala S., Petersen J., Sollid L. M., Reid H. H., et al. (2022). Structural basis of T cell receptor specificity and cross-reactivity of two HLA-DQ2.5-restricted gluten epitopes in celiac disease. J. Biol. Chem. 298, 101619. 10.1016/j.jbc.2022.101619 PubMed DOI PMC

Corazza G. R., Tabacchi P., Frisoni M., Prati C., Gasbarrini G. (1985). DR and non-DR Ia allotypes are associated with susceptibility to coeliac disease. Gut 26, 1210–1213. 10.1136/gut.26.11.1210 PubMed DOI PMC

Costantino F., Breban M., Garchon H. J. (2018). Genetics and functional genomics of spondyloarthritis. Front. Immunol. 9, 2933. 10.3389/fimmu.2018.02933 PubMed DOI PMC

Creary L. E., Sacchi N., Mazzocco M., Morris G. P., Montero-Martin G., Chong W., et al. (2021). High-resolution HLA allele and haplotype frequencies in several unrelated populations determined by next generation sequencing: 17th International HLA and Immunogenetics Workshop joint report. Hum. Immunol. 82, 505–522. 10.1016/j.humimm.2021.04.007 PubMed DOI PMC

Cudworth A. G., Woodrow J. C. (1975). HL-A system and diabetes mellitus. Diabetes 24, 345–349. 10.2337/diab.24.4.345 PubMed DOI

Dequeker J., Decock T., Walravens M., Van de Putte I. (1978). A systematic survey of the HLA B27 prevalence in inflammatory rheumatic diseases. J. Rheumatol. 5, 452–459. PubMed

Ek J., Albrechtsen D., Solheim B. G., Thorsby E. (1978). Strong association between the HLA-Dw3-related B cell alloantigen -DRw3 and coeliac disease. Scand. J. Gastroenterol. 13, 229–233. 10.3109/00365527809181753 PubMed DOI

European Federation for Immunogenetics (2020). Standards – version 8.0. Available at: https://efi-web.org/committees/standards-committee (Accessed June 15, 2023).

Evans D. A. (1973). Letter: coeliac disease and HL-A8. Lancet 2, 1096. PubMed

Farid N. R., Sampson L., Noel P., Barnard J. M., Davis A. J., Hillman D. A. (1979). HLA-D--related (DRw) antigens in juvenile diabetes mellitus. Diabetes 28, 552–557. 10.2337/diab.28.6.552 PubMed DOI

Gonzalez-Galarza F. F., McCabe A., Santos E. J., Jones J., Takeshita L. Y., Ortega-Rivera N. D., et al. (2020). Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acid Res. 48, D783–D788. 10.1093/nar/gkz1029 PubMed DOI PMC

Gunn I., Leheny W., Lakshmipathi T., Lamont M. A., Faed M. (1979). HLA antigens in a Scottish psoriatic population. Tissue Antigens 14, 157–164. 10.1111/j.1399-0039.1979.tb00833.x PubMed DOI

Gutierrez-Achury J., Zhernakova A., Pulit S. L., Trynka G., Hunt K. A., Romanos J., et al. (2015). Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat. Genet. 47, 577–578. 10.1038/ng.3268 PubMed DOI PMC

Huang X. F., Brown M. A. (2022). Progress in the genetics of uveitis. Genes Immun. 23, 57–65. 10.1038/s41435-022-00168-6 PubMed DOI PMC

INSTAND (2023). Instand auf einen blick. Available at: https://www.instand-ev.de (Accessed July 24, 2023).

Juji T., Satake M., Honda Y., Doi Y. (1984). HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 24, 316–319. 10.1111/j.1399-0039.1984.tb02144.x PubMed DOI

Karvonen J., Tilikainen A., Lassus A. (1976). HLA antigens in psoriasis. A family study. Ann. Clin. Res. 8, 298–304. PubMed

Kirino Y., Bertsias G., Ishigatsubo Y., Mizuki N., Tugal-Tutkun I., Seyahi E., et al. (2013). Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45, 202–207. 10.1038/ng.2520 PubMed DOI PMC

Mallal S., Nolan D., Witt C., Masel G., Martin A. M., Moore C., et al. (2002). Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732. 10.1016/s0140-6736(02)07873-x PubMed DOI

Megiorni F., Pizzuti A. (2012). HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: practical implications of the HLA molecular typing. J. Biomed. Sci. 19, 88. 10.1186/1423-0127-19-88 PubMed DOI PMC

Mignot E., Lin X., Arrigoni J., Macaubas C., Olive F., Hallmayer J., et al. (1994). DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep 17, S60–S67. 10.1093/sleep/17.suppl_8.s60 PubMed DOI

Moutsianas L., Gutierrez-Achury J. (2018). Genetic association in the HLA region. Methods Mol. Biol. 1793, 111–134. 10.1007/978-1-4939-7868-7_8 PubMed DOI

Nathan P., Hassel J. C., Rutkowski P., Baurain J. F., Butler M. O., Schlaak M., et al. (2021). Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206. 10.1056/NEJMoa2103485 PubMed DOI

Nunes E., Heslop H., Fernandez-Vina M., Taves C., Wagenknecht D. R., Eisenbrey A. B., et al. (2011). Definitions of histocompatibility typing terms: harmonization of histocompatibility typing terms working group. Hum. Immunol. 72, 1214–1216. 10.1016/j.humimm.2011.06.002 PubMed DOI

Owerbach D., Gunn S., Gabbay K. H. (1989). Primary association of HLA-DQw8 with type I diabetes in DR4 patients. Diabetes 38, 942–945. 10.2337/diab.38.7.942 PubMed DOI

Rouvroye M. D., van Zijtveld S., Bonnet P., Spierings E., Bontkes H. J. (2019). HLA-DQ typing kits in diagnosis and screening for celiac disease. Genet. Test. Mol. Biomarkers 23, 418–422. 10.1089/gtmb.2018.0329 PubMed DOI

Sciurti M., Fornaroli F., Gaiani F., Bonaguri C., Leandro G., Di Mario F., et al. (2018). Genetic susceptibilty and celiac disease: what role do HLA haplotypes play? Acta Biomed. 89, 17–21. 10.23750/abm.v89i9-S.7953 PubMed DOI PMC

Seignalet J., Billiard M. (1984). Possible association between HLA-B7 and narcolepsy. Tissue Antigens 23 (3), 188–189. 10.1111/j.1399-0039.1984.tb00031.x PubMed DOI

Slatkin M. (2008). Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485. 10.1038/nrg2361 PubMed DOI PMC

Sparks J. A., Costenbader K. H. (2014). Genetics, environment, and gene-environment interactions in the development of systemic rheumatic diseases. Rheum. Dis. Clin. North Am. 40, 637–657. 10.1016/j.rdc.2014.07.005 PubMed DOI PMC

Tafti M., Hor H., Dauvilliers Y., Lammers G. J., Overeem S., Mayer G., et al. (2014). DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37, 19–25. 10.5665/sleep.3300 PubMed DOI PMC

Thorsby E. (2009). A short history of HLA. Tissue Antigens 74, 101–116. 10.1111/j.1399-0039.2009.01291.x PubMed DOI

Tsuji K., Inouye H., Nose Y., Sasazuki T., Ozawa A., Ohkido M. (1979). The first report of the human renal transplant registry in Japan. Acta Derm. Venereol. Suppl. Stockh. 87, 107–114. PubMed

Tye-Din J. A., Cameron D. J., Daveson A. J., Day A. S., Dellsperger P., Hogan C., et al. (2015). Appropriate clinical use of human leukocyte antigen typing for coeliac disease: an Australasian perspective. Intern Med. J. 45, 441–450. 10.1111/imj.12716 PubMed DOI PMC

Vartdal F., Johansen B. H., Friede T., Thorpe C. J., Stevanović S., Eriksen J. E., et al. (1996). The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. Eur. J. Immunol. 26, 2764–2772. 10.1002/eji.1830261132 PubMed DOI

Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678. 10.1038/nature05911 PubMed DOI PMC

Woodrow J. C. (1973). HL-A 27 and Reiter's syndrome. Lancet 2, 671–672. 10.1016/s0140-6736(73)92505-1 PubMed DOI

World Marrow Donor Association (2023). The Global Database Listing over 41 million potential cures. Available at: https://wmda.info (Accessed July 7, 2023).

Yazici H., Seyahi E., Hatemi G., Yazici Y. (2018). Behçet syndrome: a contemporary view. Nat. Rev. Rheumatol. 14, 107–119. 10.1038/nrrheum.2017.208 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...