Ventral posterolateral and ventral posteromedial thalamocortical neurons have distinct physiological properties
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
R01 NS105804
NINDS NIH HHS - United States
R21 NS128635
NINDS NIH HHS - United States
PubMed
37937368
PubMed Central
PMC11068404
DOI
10.1152/jn.00525.2022
Knihovny.cz E-resources
- Keywords
- somatosensory thalamus, synaptic transmission, thalamocortical neuron, ventral posterolateral nucleus, ventral posteromedial nucleus,
- MeSH
- Cerebral Cortex MeSH
- Mice MeSH
- Synaptic Transmission physiology MeSH
- Neurons * physiology MeSH
- Somatosensory Cortex physiology MeSH
- Synapses physiology MeSH
- Thalamus * physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.
Department of Human Nutrition Foods and Exercise Virginia Tech Blacksburg Virginia United States
Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke Virginia United States
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Beenhakker MP, Huguenard JR. Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62: 612–632, 2009. doi:10.1016/j.neuron.2009.05.015. PubMed DOI PMC
Wolff M, Vann SD. The cognitive thalamus as a gateway to mental representations. J Neurosci 39: 3–14, 2019. doi:10.1523/JNEUROSCI.0479-18.2018. PubMed DOI PMC
Fanselow EE, Nicolelis MA. Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci 19: 7603–7616, 1999. doi:10.1523/JNEUROSCI.19-17-07603.1999. PubMed DOI PMC
Fernandez LMJ, Luthi A. Sleep spindles: mechanisms and functions. Physiol Rev 100: 805–868, 2020. doi:10.1152/physrev.00042.2018. PubMed DOI
Brecht M, Sakmann B. Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 538: 495–515, 2002. doi:10.1113/jphysiol.2001.012334. PubMed DOI PMC
Zhang ZW, Deschenes M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17: 6365–6379, 1997. doi:10.1523/JNEUROSCI.17-16-06365.1997. PubMed DOI PMC
Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24: 122–126, 2001. doi:10.1016/s0166-2236(00)01714-8. PubMed DOI
Steriade M, Llinas RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68: 649–742, 1988. doi:10.1152/physrev.1988.68.3.649. PubMed DOI
Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95: 3297–3308, 2006. doi:10.1152/jn.00166.2006. PubMed DOI
Clemente Perez A, Ritter-Makinson S, Higashikubo B, Brovarney S, Cho FS, Urry A, Holden SS, Wimer M, Dávid C, Fenno LE, Acsády L, Deisseroth K, Paz JT. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep 19: 2130–2142, 2017. doi:10.1016/j.celrep.2017.05.044. PubMed DOI PMC
Ha GE, Lee J, Kwak H, Song K, Kwon J, Jung S-Y, Hong J, Chang G-E, Hwang EM, Shin H-S, Lee CJ, Cheong E. The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun 7: 13791, 2016. [Erratum in Nat Commun 12: 6503, 2021]. doi:10.1038/ncomms13791. PubMed DOI PMC
Cheong E, Kim C, Choi BJ, Sun M, Shin H-S. Thalamic ryanodine receptors are involved in controlling the tonic firing of thalamocortical neurons and inflammatory pain signal processing. J Neurosci 31: 1213–1218, 2011. doi:10.1523/JNEUROSCI.3203-10.2011. PubMed DOI PMC
Abbas SY, Ying S-W, Goldstein PA. Compartmental distribution of hyperpoarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons. Neuroscience 141: 1811–1825, 2006. doi:10.1016/j.neuroscience.2006.05.034. PubMed DOI
Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A. The Cav3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108: 13823–13828, 2011. doi:10.1073/pnas.1105115108. PubMed DOI PMC
Huguenard J, Prince D. Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J Neurosci 14: 5485–5502, 1994. doi:10.1523/JNEUROSCI.14-09-05485.1994. PubMed DOI PMC
Jacobsen RB, Ulrich D, Huguenard JR. GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. J Neurophysiol 86: 1365–1375, 2001. doi:10.1152/jn.2001.86.3.1365. PubMed DOI
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium currents. J Neurosci 19: 1895–1911, 1999. doi:10.1523/JNEUROSCI.19-06-01895.1999. PubMed DOI PMC
Warren RA, Agmon A, Jones EG. Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. J Neurophysiol 72: 1993–2003, 1994. doi:10.1152/jn.1994.72.4.1993. PubMed DOI
Zobeiri M, Chaudhary R, Blaich A, Rottmann M, Herrmann S, Meuth P, Bista P, Kanyshkova T, Lüttjohann A, Narayanan V, Hundehege P, Meuth SG, Romanelli MN, Urbano FJ, Pape H-C, Budde T, Ludwig A. The hyperpolarization-activated HCN4 channel is important for proper maintenance of oscillatory activity in the thalamocortical system. Cereb Cortex 29: 2291–2304, 2019. doi:10.1093/cercor/bhz047. PubMed DOI PMC
Iavarone E, Yi J, Shi Y, Zandt BJ, O'Reilly C, Van Geit W, Rossert C, Markram H, Hill SL. Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput Biol 15: e1006753, 2019. doi:10.1371/journal.pcbi.1006753. PubMed DOI PMC
Hazra A, Corbett BF, You JC, Aschmies S, Zhao L, Li K, Lepore AC, Marsh ED, Chin J. Corticothalamic network dysfunction and behavioral deficits in a mouse model of Alzheimer’s disease. Neurobiol Aging 44: 96–107, 2016. doi:10.1016/j.neurobiolaging.2016.04.016. PubMed DOI PMC
Paz JT, Bryant AS, Peng K, Fenno L, Yizhar O, Frankel WN, Deisseroth K, Huguenard JR. A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy. Nat Neurosci 14: 1167–1173, 2011. doi:10.1038/nn.2896. PubMed DOI PMC
Hedrich UBS, Liautard C, Kirschenbaum D, Pofahl M, Lavigne J, Liu Y, Theiss S, Slotta J, Escayg A, Dihne M, Beck H, Mantegazza M, Lerche H. Impaired action potential initiation in GABAergic interneurons caused hyperexcitable networks in an epileptic mouse model carrying a human Nav1.1 mutation. J Neurosci 34: 14874–14889, 2014. doi:10.1523/JNEUROSCI.0721-14.2014. PubMed DOI PMC
Ritter-Makinson S, Clemente-Perez A, Higashikubo B, Cho F, Holden S, Bennett E, Chkaidze A, Rooda OE, Cornet MC, Hoebeek F, Yamakawa K, Cilio MR, Delord B, Paz J. Augmented reticular thalamic bursting and seizures in Scn1a-Dravet syndrome. Cell Rep 26: 54–64.e6, 2019. [Erratum in Cell Rep 26: 1071, 2019]. doi:10.1016/j.celrep.2018.12.018. PubMed DOI PMC
Hall KD, Lifshitz J. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 1323: 161–173, 2010. doi:10.1016/j.brainres.2010.01.067. PubMed DOI PMC
Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR. Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury. Nat Neurosci 16: 64–70, 2013. doi:10.1038/nn.3269. PubMed DOI PMC
Princivalle AP, Richards DA, Duncan JS, Spreafico R, Bowery NG. Modification of GABAB1 and GABAB2 receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS). Epilepsy Res 55: 39–51, 2003. doi:10.1016/s0920-1211(03)00090-1. PubMed DOI
David F, Carcak N, Furdan S, Onat F, Gould T, Meszaros A, Giovanni GD, Hernandez VM, Chan CS, Lorincz ML, Crunelli V. Suppression of hyperpolarization-activated cyclic nucleotide-gated channel function in thalamocortical neurons prevents genetically determined and pharmacologically induced absence seizures. J Neurosci 38: 6615–6627, 2018. doi:10.1523/JNEUROSCI.0896-17.2018. PubMed DOI PMC
Studtmann C, Ladislav M, Topolski MA, Safari M, Swanger SA. Na(V)1.1 haploinsufficiency impairs glutamatergic and GABAergic neuron function in the thalamus. Neurobiol Dis 167: 105672, 2022. doi:10.1016/j.nbd.2022.105672. PubMed DOI PMC
Chiaia NL, Rhoades RW, Fish SE, Killackey HP. Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314: 217–236, 1991. doi:10.1002/cne.903140203. PubMed DOI
Landisman CE, Connors BW. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb Cortex 17: 2853–2865, 2007. doi:10.1093/cercor/bhm025. PubMed DOI
Miyata M. Distinct properties of corticothalamic and primary sensory synapses to thalamic neurons. Neurosci Res 59: 377–382, 2007. doi:10.1016/j.neures.2007.08.015. PubMed DOI
Castro-Alamancos MA. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J Neurophysiol 87: 946–953, 2002. doi:10.1152/jn.00426.2001. PubMed DOI
Hsu C-L, Yang H-W, Yen C-T, Min M-Y. Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus. J Physiol 588: 4347–4363, 2010. doi:10.1113/jphysiol.2010.192864. PubMed DOI PMC
Gaidica M. mattgaidica/RatBrainAtlasAPI (Online).https://github.com/mattgaidica/RatBrainAtlasAPI) [2022 Dec 2].
Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol 28: 348–353, 2010. doi:10.1038/nbt.1612. PubMed DOI PMC
Peng H, Bria A, Zhou Z, Iannello G, Long F. Extensible visualization and analysis for multidimensional images using Vaa3D. Nat Protoc 9: 193–208, 2014. doi:10.1038/nprot.2014.011. PubMed DOI
Zhao T, Olbris DJ, Yu Y, Plaza SM. NeuTu: software for collaborative, large-scale, segmentation-based connectome reconstruction. Front Neural Circuits 12: 101, 2018. doi:10.3389/fncir.2018.00101. PubMed DOI PMC
Arshadi C, Gunther U, Eddison M, Harrington KIS, Ferreira TA. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat Methods 18: 374–377, 2021. doi:10.1038/s41592-021-01105-7. PubMed DOI
Ruxton GD. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology 17: 688–690, 2006. doi:10.1093/beheco/ark016. DOI
Calin-Jageman RJ, Cumming G. Estimation for better inference in neuroscience. eNeuro 6: ENEURO.0205-19.2019, 2019. doi:10.1523/ENEURO.0205-19.2019. PubMed DOI PMC
Hodges JL, Lehmann EL. Estimates of location based on rank tests. Ann Math Statist 34: 598–611, 1963. doi:10.1214/aoms/1177704172. DOI
Curran-Everett D, Benos DJ. Guidelines for reporting statistics in journals published by the American Physiological Society. J Neurophysiol 92: 669–671, 2004. doi:10.1152/jn.00534.2004. PubMed DOI
Ha GE, Cheong E. Spike frequency adaptation in neurons of the central nervous system. Exp Neurobiol 26: 179–185, 2017. doi:10.5607/en.2017.26.4.179. PubMed DOI PMC
Desai NV, Varela C. Distinct burst properties contribute to the functional diversity of thalamic nuclei. J Comp Neurol 529: 3726–3750, 2021. [Erratum in J Comp Neurol 530: 1126, 2022]. doi:10.1002/cne.25141. PubMed DOI PMC
Spacek J, Lieberman AR. Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J Anat 117: 487–516, 1974. PubMed PMC
Liu XB, Honda CN, Jones EG. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol 352: 69–91, 1995. doi:10.1002/cne.903520106. PubMed DOI
Williams MN, Zahm DS, Jacquin MF. Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur J Neurosci 6: 429–453, 1994. doi:10.1111/j.1460-9568.1994.tb00286.x. PubMed DOI
Martinez-Garcia RI, Voelcker B, Zaltsman JB, Patrick SL, Stevens TR, Connors BW, Cruikshank SJ. Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 583: 813–818, 2020. [Erratum in Nature 585: E13, 2020]. doi:10.1038/s41586-020-2512-5. PubMed DOI PMC
Ulrich D, Besseyrias V, Bettler B. Functional mapping of GABA(B)-receptor subtypes in the thalamus. J Neurophysiol 98: 3791–3795, 2007. doi:10.1152/jn.00756.2007. PubMed DOI
Huguenard JR, Prince DA. Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71: 2576–2581, 1994. doi:10.1152/jn.1994.71.6.2576. PubMed DOI
Kenshalo DR Jr, Giesler GJ Jr, Leonard RB, Willis WD. Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614, 1980. doi:10.1152/jn.1980.43.6.1594. PubMed DOI
Martin WJ, Hohmann AG, Walker JM. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J Neurosci 16: 6601–6611, 1996. doi:10.1523/JNEUROSCI.16-20-06601.1996. PubMed DOI PMC