Corrosion by Polythionic Acid in the Oil and Gas Sector: A Brief Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37959640
PubMed Central
PMC10649995
DOI
10.3390/ma16217043
PII: ma16217043
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion, corrosion mechanism, mitigation strategies, polythionic acid,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Polythionic acid (PTA) corrosion is a significant challenge in the refinery industry, leading to equipment degradation, safety risks, and costly maintenance. This paper comprehensively investigates the origin, progression, mechanism, and impact of PTA corrosion on various components within refinery operations. Special attention is afforded to the susceptibility of austenitic stainless steels and nickel-based alloys to PTA corrosion and the key factors influencing its occurrence. Practical strategies and methods for mitigating and preventing PTA corrosion are also explored. This paper underscores the importance of understanding PTA corrosion and implementing proactive measures to safeguard the integrity and efficiency of refinery infrastructure.
Zobrazit více v PubMed
Popoola L.T., Grema A.S., Latinwo G.K., Gutti B., Balogun A.S. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013;4:1–15. doi: 10.1186/2228-5547-4-35. DOI
Vedavyasan C.V. Corrosion. In: Drioli E., Giorno L., editors. Encyclopedia of Membranes. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–9. DOI
Fernandes J.S., Montemor F. Corrosion. In: Gonçalves M.C., Margarido F., editors. Materials for Construction and Civil Engineering: Science, Processing, and Design. Springer International Publishing; Cham, Switzerland: 2015. pp. 679–716. DOI
Khoma M.S., Korniy S.A., Vynar V.A., Datsko B.M., Maksishko Y.Y., Dykha O.V., Bukliv R.L. Influence of hydrogen sulfide on the carbon-dioxide corrosion and the mechanical characteristics of high-strength pipe steel. Mater. Sci. 2022;57:805–812. doi: 10.1007/s11003-022-00610-0. DOI
Virtanen S. Electrochemical theory|Corrosion. In: Garche J., editor. Encyclopedia of Electrochemical Power Sources. Elsevier; Amsterdam, The Netherlands: 2009. pp. 56–63. DOI
Letardi P. Electrochemical impedance measurements in the conservation of metals. In: Creagh D.C., Bradley D.A., editors. Radiation in Art and Archeometry. Elsevier Science B.V.; Amsterdam, The Netherlands: 2000. pp. 15–39. DOI
Shein A. Corrosion-electrochemical behavior of iron family silicides in various electrolytes. Prot. Met. Phys. Chem. 2010;46:479–488. doi: 10.1134/S2070205110040155. DOI
Li X., Zhang L., Khan F., Han Z. A data-driven corrosion prediction model to support digitization of subsea operations. Process Saf. Environ. Prot. 2021;153:413–421. doi: 10.1016/j.psep.2021.07.031. DOI
Groysman A. Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze Ochr. Mater. 2016;61:100–117. doi: 10.1515/kom-2017-0013. DOI
Hassan-Beck H., Firmansyah T., Suleiman M.I., Matsumoto T., Al Musharfy M., Chaudry A.H., Rakib M.A. Failure analysis of an oil refinery sour water stripper overhead piping loop: Assessment and mitigation of erosion problems. Eng. Fail. Anal. 2019;96:88–99. doi: 10.1016/j.engfailanal.2018.09.035. DOI
Parrott R. Potential hazards from undetected corrosion in complex equipment: A case study of the destructive separation of an offshore heat exchanger. Eng. Fail. Anal. 2014;44:424–440. doi: 10.1016/j.engfailanal.2014.06.002. DOI
Spatolisano E., Pellegrini L.A., Gelosa S., Broglia F., Bonoldi L., de Angelis A.R., Moscotti D.G., Nali M. Polythionic acids in the wackenroder reaction. ACS Omega. 2021;6:26140–26149. doi: 10.1021/acsomega.1c03139. PubMed DOI PMC
Spatolisano E., Pellegrini L.A., Bonoldi L., de Angelis A.R., Moscotti D.G., Nali M. Kinetic modelling of polythionic acids in Wackenroder reaction. Chem. Eng. Sci. 2022;250:117403. doi: 10.1016/j.ces.2021.117403. DOI
Zhang H., Jeffrey M.I. A kinetic study of rearrangement and degradation reactions of tetrathionate and trithionate in near-neutral solutions. Inorg. Chem. 2010;49:10273–10282. doi: 10.1021/ic9023025. PubMed DOI
Varga D., Horváth A.K. Kinetics and mechanism of the decomposition of tetrathionate ion in alkaline medium. Inorg. Chem. 2007;46:7654–7661. doi: 10.1021/ic700992u. PubMed DOI
Ji C., Yan X., Pan C., Lv F., Gao Q. The key heterolysis selectivity of divalent sulfur–sulfur bonds for a unified mechanistic scheme in the thiosulfatolysis and sulfitolysis of the pentathionate ion. Eur. J. Inorg. Chem. 2016;2016:5497–5503. doi: 10.1002/ejic.201600991. DOI
Xu H., Zhou S., Zhu Y., Xu W., Xiong X., Tan H. Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV. Chin. J. Chem. Eng. 2019;27:1956–1964. doi: 10.1016/j.cjche.2018.12.020. DOI
Steudel R. Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering. IWA Publishing; London, UK: 2020. The chemical sulfur cycle; pp. 8–53. DOI
Ji C., Yan X., Horváth A.K., Pan C., Zhao Y., Gao Q. Comprehensive simultaneous kinetic study of sulfitolysis and thiosulfatolysis of tetrathionate ion: Unravelling the unique pH dependence of thiosulfatolysis. J. Phys. Chem. A. 2015;119:1238–1245. doi: 10.1021/jp5108119. PubMed DOI
Steudel R., Göbel T., Holdt G. The molecular nature of the hydrophilic sulfur prepared from aqueous sulfide and sulfite (selmi sulfur sol) Z. Naturforsch. B. 1989;44:526–530. doi: 10.1515/znb-1989-0504. DOI
Nietzel O.A., DeSesa M.A. Specrophotometric determination of tetrathionate. Anal. Chem. 1955;27:1839–1841. doi: 10.1021/ac60107a057. DOI
Koh T., Aoki Y., Iwasaki I. Determination of micro-amounts of polythionates. Part XI. Spectrophotometric determination of two species of polythionates in their mixtures by cyanolysis and solvent extraction. Anlst. 1979;104:41–46. doi: 10.1039/an9790400041. DOI
Wolkoff A.W., Larose R.H. Separation and detection of low concentrations of polythionates by high speed anion exchange liquid chromatography. Anal. Chem. 1975;47:1003–1008. doi: 10.1021/ac60357a009. DOI
Steudel R., Holdt G. Ion-pair chromatographic separation of polythionates SnO62- with up to thirteen sulphur atoms. J. Chromatogr. A. 1986;361:379–384. doi: 10.1016/S0021-9673(01)86929-6. DOI
Τawancy H. Failure of hydrocracker heat exchanger tubes in an oil refinery by polythionic acid-stress corrosion cracking. Eng. Fail. Anal. 2009;16:2091–2097. doi: 10.1016/j.engfailanal.2009.02.002. DOI
Rajasuriyan S., Mohd Zaid H.F., Majid M.F., Ramli R.M., Jumbri K., Lim J.W., Mohamad M., Show P.L., Yuliarto B. Oxidative extractive desulfurization system for fuel oil using acidic eutectic-based ionic liquid. Processes. 2021;9:1050. doi: 10.3390/pr9061050. DOI
Psyllaki P.P., Pantazopoulos G., Pistoli A. Degradation of stainless steel grids in chemically aggressive environment. Eng. Fail. Anal. 2013;35:418–426. doi: 10.1016/j.engfailanal.2013.04.016. DOI
Ho C.D., Chen Y.H., Chang C.M., Chang H. Evaluation of Process Control Schemes for Sour Water Strippers in Petroleum Refining. Processes. 2021;9:363. doi: 10.3390/pr9020363. DOI
Samnioti A., Kanakaki E.M., Fotias S.P., Gaganis V. Rapid Hydrate Formation Conditions Prediction in Acid Gas Streams. Fluids. 2023;8:226. doi: 10.3390/fluids8080226. DOI
Hakimi M., Omar M.B., Ibrahim R. Application of Neural Network in Predicting H2S from an Acid Gas Removal Unit (AGRU) with Different Compositions of Solvents. Sensors. 2023;23:1020. doi: 10.3390/s23021020. PubMed DOI PMC
Parivazh M.M., Mousavi M., Naderi M., Rostami A., Dibaj M., Akrami M. The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System. Sustainability. 2022;14:9612. doi: 10.3390/su14159612. DOI
Fu K., Liu B., Chen X., Chen Z., Liang J., Zhang Z., Wang L. Investigation of a Complex Reaction Pathway Network of Isobutane/2-Butene Alkylation by CGC–FID and CGC-MS-DS. Molecules. 2022;27:6866. doi: 10.3390/molecules27206866. PubMed DOI PMC
Huang X., Sun M., Kang Y. Fireside Corrosion on Heat Exchanger Surfaces and Its Effect on the Performance of Gas-Fired Instantaneous Water Heaters. Energies. 2019;12:2583. doi: 10.3390/en12132583. DOI
Aljarah A., Vahdati N., Butt H. Magnetic Internal Corrosion Detection Sensor for Exposed Oil Storage Tanks. Sensors. 2021;21:2457. doi: 10.3390/s21072457. PubMed DOI PMC
Gutiérrez-Padilla M.G.D., Bielefeldt A., Ovtchinnikov S., Hernandez M., Silverstein J. Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 2010;40:293–301. doi: 10.1016/j.cemconres.2009.10.002. DOI
Muhsin W., Zhang J. Modelling and optimal operation of a crude oil hydrotreating process with atmospheric distillation unit utilising stacked neural networks. In: Espuña A., Graells M., Puigjaner L., editors. Computer Aided Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2017. pp. 2479–2484. DOI
Baylor V., Keiser J. Corrosion and stress corrosion cracking in coal liquefaction processes. J. Mater. Energy Syst. 1980;2:12–27. doi: 10.1007/BF02833394. DOI
Speight J.G. Chapter 2-Materials of Construction for Refinery Units. In: Speight J.G., editor. Oil and Gas Corrosion Prevention. Gulf Professional Publishing; Boston, DC, USA: 2014. pp. 3–37. DOI
Dorofeeva T.I., Fedorischeva M.V., Gubaidulina T.A., Sergeev O.V., Sungatulin A.R., Sergeev V.P. Investigation of corrosion properties and composition of the surface formed on AISI 321 stainless steel by ion implantation. Metals. 2023;13:1468. doi: 10.3390/met13081468. DOI
Zatkalíková V., Uhríčik M., Markovičová L., Kuchariková L. Corrosion behavior of sensitized AISI 304 stainless steel in acid chloride solution. Materials. 2022;15:8543. doi: 10.3390/ma15238543. PubMed DOI PMC
Wan Z., Dai W., Guo W., Jia Q., Zhang H., Xue J., Lin L., Peng P. Improved corrosion resistance of Ni-base Alloy 600 welded joint by laser shock peening. J. Manuf. Process. 2022;80:718–728. doi: 10.1016/j.jmapro.2022.05.061. DOI
Berlanga-Labari C., Biezma-Moraleda M.V., Rivero P.J. Corrosion of cast aluminum alloys: A review. Metals. 2020;10:1384. doi: 10.3390/met10101384. DOI
You X., Ning K., Bai D., Liu Y., Zhang H., Liu F. Corrosion behavior of high-nitrogen steel hybrid welded joints fabricated by hybrid laser–arc welding. Materials. 2023;16:3617. doi: 10.3390/ma16103617. PubMed DOI PMC
Davíðsdóttir S., Gunnarsson B.G., Kristjánsson K.B., Ledésert B.A., Ólafsson D.I. Study of corrosion resistance properties of heat exchanger metals in two different geothermal environments. Geosciences. 2021;11:498. doi: 10.3390/geosciences11120498. DOI
Swaminathan J., Singh R., Gunjan M.K., Mahato B. Sensitization induced stress corrosion failure of AISI 347 stainless steel fractionator furnace tubes. Eng. Fail. Anal. 2011;18:2211–2221. doi: 10.1016/j.engfailanal.2011.07.015. DOI
Panossian Z., de Almeida N.L., de Sousa R.M.F., de Souza Pimenta G., Marques L.B.S. corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012;58:1–11. doi: 10.1016/j.corsci.2012.01.025. DOI
Alireza K. Stress corrosion cracking behavior of materials. In: Kary T., editor. Engineering Failure Analysis. IntechOpen; Rijeka, Croatia: 2020. pp. 55–76. DOI
Marrow T.J., Babout L., Jivkov A.P., Wood P., Engelberg D., Stevens N., Withers P.J., Newman R.C. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J. Nucl. Mater. 2006;352:62–74. doi: 10.1016/j.jnucmat.2006.02.042. DOI
Was G.S., Allen T.R. Chapter 6-Corrosion issues in current and next-generation nuclear reactors. In: Odette G.R., Zinkle S.J., editors. Structural Alloys for Nuclear Energy Applications. Elsevier; Boston, DC, USA: 2019. pp. 211–246. DOI
Yonezu A., Kusano R., Chen X. On the mechanism of intergranular stress corrosion cracking of sensitized stainless steel in tetrathionate solution. J. Mater. Sci. 2013;48:2447–2453. doi: 10.1007/s10853-012-7032-8. DOI
Behr A., Vorholt A.J. Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions. Springer Netherlands; Dordrecht, The Netherlands: 2002. Hydrodesulfurization and hydrodenitrogenation; pp. 1–34. DOI
Singh P.M., Ige O., Mahmood J. Stress corrosion cracking of 304L stainless steel in sodium sulfide containing caustic solutions. J. Corros. Sci. Eng. 2003;59:843–850. doi: 10.5006/1.3287704. DOI
Shayegani M., Zakersafaee P. Failure analysis of reactor heater tubes SS347H in ISOMAX unit. Eng. Fail. Anal. 2012;22:121–127. doi: 10.1016/j.engfailanal.2012.01.015. DOI
Khalifeh A.R., Banaraki A.D., Daneshmanesh H., Paydar M.H. Stress corrosion cracking of a circulation water heater tubesheet. Eng. Fail. Anal. 2017;78:55–66. doi: 10.1016/j.engfailanal.2017.03.007. DOI
Shabani Mahalli M., Ahmadi A., Sabouri M. Investigation of intergranular stress corrosion cracking in a failed 347H stainless steel furnace tube. Eng. Fail. Anal. 2022;142:106835. doi: 10.1016/j.engfailanal.2022.106835. DOI
Turnbull A., Mingard K., Lord J.D., Roebuck B., Tice D.R., Mottershead K.J., Fairweather N.D., Bradbury A.K. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros. Sci. 2011;53:3398–3415. doi: 10.1016/j.corsci.2011.06.020. DOI
Ali M.A., Baggash M., Rustamov J., Abdulghafor R., Abdo N.A.D.N., Abdo M.H., Mohammed T.S., Hasan A.A., Abdo A.N., Turaev S., et al. An automatic visual inspection of oil tanks exterior surface using unmanned aerial vehicle with image processing and cascading fuzzy logic algorithms. Drones. 2023;7:133. doi: 10.3390/drones7020133. DOI
Cao Q., Pojtanabuntoeng T., Esmaily M., Thomas S., Brameld M., Amer A., Birbilis N. A review of corrosion under insulation: A critical issue in the oil and gas industry. Metals. 2022;12:561. doi: 10.3390/met12040561. DOI
Rachman A., Ratnayake R.C. Machine learning approach for risk-based inspection screening assessment. Reliab. Eng. Syst. Saf. 2019;185:518–532. doi: 10.1016/j.ress.2019.02.008. DOI
Gore P., Sujata M., Bhaumik S.K. Stress corrosion cracking of ring type joint of reactor pipeline of a hydrocracker unit. J. Fail. Anal. Prev. 2014;14:307–313. doi: 10.1007/s11668-014-9820-8. DOI
Borgioli F. The corrosion behavior in different environments of austenitic stainless steels subjected to thermochemical surface treatments at low temperatures: An overview. Metals. 2023;13:776. doi: 10.3390/met13040776. DOI
Bradley S.A., Mucek M.W., Anada H., Osuki T. Alloy for resistance to polythionic acid stress corrosion cracking for hydroprocessing applications. Mater. Des. 2016;110:296–303. doi: 10.1016/j.matdes.2016.07.067. DOI
Singh R. Influence of cold rolling on sensitization and intergranular stress corrosion cracking of AISI 304 aged at 500 °C. J. Mater. Process. Technol. 2008;206:286–293. doi: 10.1016/j.jmatprotec.2007.12.029. DOI
Choudary N.V., Rao P.V.C. Polythionic acid corrosion in refinery hydroprocessors. Mater. Perform. 2010;49:62–66.
Almubarak A., Belkharchouche M., Hussain A. Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries. Anti-Corros. Method. 2010;57:58–64. doi: 10.1108/00035591011028014. DOI
Lobley G.R. Stress corrosion cracking: Cases in refinery equipment. In: Shipilov S.A., editor. Environment-Induced Cracking of Materials. Elsevier; Amsterdam, The Netherlands: 2008. pp. 401–410. DOI
Zomorodian A., Behnood A. Review of corrosion inhibitors in reinforced concrete: Conventional and green materials. Buildings. 2023;13:1170. doi: 10.3390/buildings13051170. DOI
Fang J., Li J. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J. Mol. Struct. 2002;593:179–185. doi: 10.1016/S0166-1280(02)00316-0. DOI
Revie R.W. Uhlig’s Corrosion Handbook. Volume 51. John Wiley & Sons; Hoboken, NJ, USA: 2011. DOI