Corrosion by Polythionic Acid in the Oil and Gas Sector: A Brief Overview

. 2023 Nov 05 ; 16 (21) : . [epub] 20231105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37959640

Polythionic acid (PTA) corrosion is a significant challenge in the refinery industry, leading to equipment degradation, safety risks, and costly maintenance. This paper comprehensively investigates the origin, progression, mechanism, and impact of PTA corrosion on various components within refinery operations. Special attention is afforded to the susceptibility of austenitic stainless steels and nickel-based alloys to PTA corrosion and the key factors influencing its occurrence. Practical strategies and methods for mitigating and preventing PTA corrosion are also explored. This paper underscores the importance of understanding PTA corrosion and implementing proactive measures to safeguard the integrity and efficiency of refinery infrastructure.

Zobrazit více v PubMed

Popoola L.T., Grema A.S., Latinwo G.K., Gutti B., Balogun A.S. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013;4:1–15. doi: 10.1186/2228-5547-4-35. DOI

Vedavyasan C.V. Corrosion. In: Drioli E., Giorno L., editors. Encyclopedia of Membranes. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–9. DOI

Fernandes J.S., Montemor F. Corrosion. In: Gonçalves M.C., Margarido F., editors. Materials for Construction and Civil Engineering: Science, Processing, and Design. Springer International Publishing; Cham, Switzerland: 2015. pp. 679–716. DOI

Khoma M.S., Korniy S.A., Vynar V.A., Datsko B.M., Maksishko Y.Y., Dykha O.V., Bukliv R.L. Influence of hydrogen sulfide on the carbon-dioxide corrosion and the mechanical characteristics of high-strength pipe steel. Mater. Sci. 2022;57:805–812. doi: 10.1007/s11003-022-00610-0. DOI

Virtanen S. Electrochemical theory|Corrosion. In: Garche J., editor. Encyclopedia of Electrochemical Power Sources. Elsevier; Amsterdam, The Netherlands: 2009. pp. 56–63. DOI

Letardi P. Electrochemical impedance measurements in the conservation of metals. In: Creagh D.C., Bradley D.A., editors. Radiation in Art and Archeometry. Elsevier Science B.V.; Amsterdam, The Netherlands: 2000. pp. 15–39. DOI

Shein A. Corrosion-electrochemical behavior of iron family silicides in various electrolytes. Prot. Met. Phys. Chem. 2010;46:479–488. doi: 10.1134/S2070205110040155. DOI

Li X., Zhang L., Khan F., Han Z. A data-driven corrosion prediction model to support digitization of subsea operations. Process Saf. Environ. Prot. 2021;153:413–421. doi: 10.1016/j.psep.2021.07.031. DOI

Groysman A. Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze Ochr. Mater. 2016;61:100–117. doi: 10.1515/kom-2017-0013. DOI

Hassan-Beck H., Firmansyah T., Suleiman M.I., Matsumoto T., Al Musharfy M., Chaudry A.H., Rakib M.A. Failure analysis of an oil refinery sour water stripper overhead piping loop: Assessment and mitigation of erosion problems. Eng. Fail. Anal. 2019;96:88–99. doi: 10.1016/j.engfailanal.2018.09.035. DOI

Parrott R. Potential hazards from undetected corrosion in complex equipment: A case study of the destructive separation of an offshore heat exchanger. Eng. Fail. Anal. 2014;44:424–440. doi: 10.1016/j.engfailanal.2014.06.002. DOI

Spatolisano E., Pellegrini L.A., Gelosa S., Broglia F., Bonoldi L., de Angelis A.R., Moscotti D.G., Nali M. Polythionic acids in the wackenroder reaction. ACS Omega. 2021;6:26140–26149. doi: 10.1021/acsomega.1c03139. PubMed DOI PMC

Spatolisano E., Pellegrini L.A., Bonoldi L., de Angelis A.R., Moscotti D.G., Nali M. Kinetic modelling of polythionic acids in Wackenroder reaction. Chem. Eng. Sci. 2022;250:117403. doi: 10.1016/j.ces.2021.117403. DOI

Zhang H., Jeffrey M.I. A kinetic study of rearrangement and degradation reactions of tetrathionate and trithionate in near-neutral solutions. Inorg. Chem. 2010;49:10273–10282. doi: 10.1021/ic9023025. PubMed DOI

Varga D., Horváth A.K. Kinetics and mechanism of the decomposition of tetrathionate ion in alkaline medium. Inorg. Chem. 2007;46:7654–7661. doi: 10.1021/ic700992u. PubMed DOI

Ji C., Yan X., Pan C., Lv F., Gao Q. The key heterolysis selectivity of divalent sulfur–sulfur bonds for a unified mechanistic scheme in the thiosulfatolysis and sulfitolysis of the pentathionate ion. Eur. J. Inorg. Chem. 2016;2016:5497–5503. doi: 10.1002/ejic.201600991. DOI

Xu H., Zhou S., Zhu Y., Xu W., Xiong X., Tan H. Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV. Chin. J. Chem. Eng. 2019;27:1956–1964. doi: 10.1016/j.cjche.2018.12.020. DOI

Steudel R. Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering. IWA Publishing; London, UK: 2020. The chemical sulfur cycle; pp. 8–53. DOI

Ji C., Yan X., Horváth A.K., Pan C., Zhao Y., Gao Q. Comprehensive simultaneous kinetic study of sulfitolysis and thiosulfatolysis of tetrathionate ion: Unravelling the unique pH dependence of thiosulfatolysis. J. Phys. Chem. A. 2015;119:1238–1245. doi: 10.1021/jp5108119. PubMed DOI

Steudel R., Göbel T., Holdt G. The molecular nature of the hydrophilic sulfur prepared from aqueous sulfide and sulfite (selmi sulfur sol) Z. Naturforsch. B. 1989;44:526–530. doi: 10.1515/znb-1989-0504. DOI

Nietzel O.A., DeSesa M.A. Specrophotometric determination of tetrathionate. Anal. Chem. 1955;27:1839–1841. doi: 10.1021/ac60107a057. DOI

Koh T., Aoki Y., Iwasaki I. Determination of micro-amounts of polythionates. Part XI. Spectrophotometric determination of two species of polythionates in their mixtures by cyanolysis and solvent extraction. Anlst. 1979;104:41–46. doi: 10.1039/an9790400041. DOI

Wolkoff A.W., Larose R.H. Separation and detection of low concentrations of polythionates by high speed anion exchange liquid chromatography. Anal. Chem. 1975;47:1003–1008. doi: 10.1021/ac60357a009. DOI

Steudel R., Holdt G. Ion-pair chromatographic separation of polythionates SnO62- with up to thirteen sulphur atoms. J. Chromatogr. A. 1986;361:379–384. doi: 10.1016/S0021-9673(01)86929-6. DOI

Τawancy H. Failure of hydrocracker heat exchanger tubes in an oil refinery by polythionic acid-stress corrosion cracking. Eng. Fail. Anal. 2009;16:2091–2097. doi: 10.1016/j.engfailanal.2009.02.002. DOI

Rajasuriyan S., Mohd Zaid H.F., Majid M.F., Ramli R.M., Jumbri K., Lim J.W., Mohamad M., Show P.L., Yuliarto B. Oxidative extractive desulfurization system for fuel oil using acidic eutectic-based ionic liquid. Processes. 2021;9:1050. doi: 10.3390/pr9061050. DOI

Psyllaki P.P., Pantazopoulos G., Pistoli A. Degradation of stainless steel grids in chemically aggressive environment. Eng. Fail. Anal. 2013;35:418–426. doi: 10.1016/j.engfailanal.2013.04.016. DOI

Ho C.D., Chen Y.H., Chang C.M., Chang H. Evaluation of Process Control Schemes for Sour Water Strippers in Petroleum Refining. Processes. 2021;9:363. doi: 10.3390/pr9020363. DOI

Samnioti A., Kanakaki E.M., Fotias S.P., Gaganis V. Rapid Hydrate Formation Conditions Prediction in Acid Gas Streams. Fluids. 2023;8:226. doi: 10.3390/fluids8080226. DOI

Hakimi M., Omar M.B., Ibrahim R. Application of Neural Network in Predicting H2S from an Acid Gas Removal Unit (AGRU) with Different Compositions of Solvents. Sensors. 2023;23:1020. doi: 10.3390/s23021020. PubMed DOI PMC

Parivazh M.M., Mousavi M., Naderi M., Rostami A., Dibaj M., Akrami M. The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System. Sustainability. 2022;14:9612. doi: 10.3390/su14159612. DOI

Fu K., Liu B., Chen X., Chen Z., Liang J., Zhang Z., Wang L. Investigation of a Complex Reaction Pathway Network of Isobutane/2-Butene Alkylation by CGC–FID and CGC-MS-DS. Molecules. 2022;27:6866. doi: 10.3390/molecules27206866. PubMed DOI PMC

Huang X., Sun M., Kang Y. Fireside Corrosion on Heat Exchanger Surfaces and Its Effect on the Performance of Gas-Fired Instantaneous Water Heaters. Energies. 2019;12:2583. doi: 10.3390/en12132583. DOI

Aljarah A., Vahdati N., Butt H. Magnetic Internal Corrosion Detection Sensor for Exposed Oil Storage Tanks. Sensors. 2021;21:2457. doi: 10.3390/s21072457. PubMed DOI PMC

Gutiérrez-Padilla M.G.D., Bielefeldt A., Ovtchinnikov S., Hernandez M., Silverstein J. Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 2010;40:293–301. doi: 10.1016/j.cemconres.2009.10.002. DOI

Muhsin W., Zhang J. Modelling and optimal operation of a crude oil hydrotreating process with atmospheric distillation unit utilising stacked neural networks. In: Espuña A., Graells M., Puigjaner L., editors. Computer Aided Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2017. pp. 2479–2484. DOI

Baylor V., Keiser J. Corrosion and stress corrosion cracking in coal liquefaction processes. J. Mater. Energy Syst. 1980;2:12–27. doi: 10.1007/BF02833394. DOI

Speight J.G. Chapter 2-Materials of Construction for Refinery Units. In: Speight J.G., editor. Oil and Gas Corrosion Prevention. Gulf Professional Publishing; Boston, DC, USA: 2014. pp. 3–37. DOI

Dorofeeva T.I., Fedorischeva M.V., Gubaidulina T.A., Sergeev O.V., Sungatulin A.R., Sergeev V.P. Investigation of corrosion properties and composition of the surface formed on AISI 321 stainless steel by ion implantation. Metals. 2023;13:1468. doi: 10.3390/met13081468. DOI

Zatkalíková V., Uhríčik M., Markovičová L., Kuchariková L. Corrosion behavior of sensitized AISI 304 stainless steel in acid chloride solution. Materials. 2022;15:8543. doi: 10.3390/ma15238543. PubMed DOI PMC

Wan Z., Dai W., Guo W., Jia Q., Zhang H., Xue J., Lin L., Peng P. Improved corrosion resistance of Ni-base Alloy 600 welded joint by laser shock peening. J. Manuf. Process. 2022;80:718–728. doi: 10.1016/j.jmapro.2022.05.061. DOI

Berlanga-Labari C., Biezma-Moraleda M.V., Rivero P.J. Corrosion of cast aluminum alloys: A review. Metals. 2020;10:1384. doi: 10.3390/met10101384. DOI

You X., Ning K., Bai D., Liu Y., Zhang H., Liu F. Corrosion behavior of high-nitrogen steel hybrid welded joints fabricated by hybrid laser–arc welding. Materials. 2023;16:3617. doi: 10.3390/ma16103617. PubMed DOI PMC

Davíðsdóttir S., Gunnarsson B.G., Kristjánsson K.B., Ledésert B.A., Ólafsson D.I. Study of corrosion resistance properties of heat exchanger metals in two different geothermal environments. Geosciences. 2021;11:498. doi: 10.3390/geosciences11120498. DOI

Swaminathan J., Singh R., Gunjan M.K., Mahato B. Sensitization induced stress corrosion failure of AISI 347 stainless steel fractionator furnace tubes. Eng. Fail. Anal. 2011;18:2211–2221. doi: 10.1016/j.engfailanal.2011.07.015. DOI

Panossian Z., de Almeida N.L., de Sousa R.M.F., de Souza Pimenta G., Marques L.B.S. corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012;58:1–11. doi: 10.1016/j.corsci.2012.01.025. DOI

Alireza K. Stress corrosion cracking behavior of materials. In: Kary T., editor. Engineering Failure Analysis. IntechOpen; Rijeka, Croatia: 2020. pp. 55–76. DOI

Marrow T.J., Babout L., Jivkov A.P., Wood P., Engelberg D., Stevens N., Withers P.J., Newman R.C. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J. Nucl. Mater. 2006;352:62–74. doi: 10.1016/j.jnucmat.2006.02.042. DOI

Was G.S., Allen T.R. Chapter 6-Corrosion issues in current and next-generation nuclear reactors. In: Odette G.R., Zinkle S.J., editors. Structural Alloys for Nuclear Energy Applications. Elsevier; Boston, DC, USA: 2019. pp. 211–246. DOI

Yonezu A., Kusano R., Chen X. On the mechanism of intergranular stress corrosion cracking of sensitized stainless steel in tetrathionate solution. J. Mater. Sci. 2013;48:2447–2453. doi: 10.1007/s10853-012-7032-8. DOI

Behr A., Vorholt A.J. Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions. Springer Netherlands; Dordrecht, The Netherlands: 2002. Hydrodesulfurization and hydrodenitrogenation; pp. 1–34. DOI

Singh P.M., Ige O., Mahmood J. Stress corrosion cracking of 304L stainless steel in sodium sulfide containing caustic solutions. J. Corros. Sci. Eng. 2003;59:843–850. doi: 10.5006/1.3287704. DOI

Shayegani M., Zakersafaee P. Failure analysis of reactor heater tubes SS347H in ISOMAX unit. Eng. Fail. Anal. 2012;22:121–127. doi: 10.1016/j.engfailanal.2012.01.015. DOI

Khalifeh A.R., Banaraki A.D., Daneshmanesh H., Paydar M.H. Stress corrosion cracking of a circulation water heater tubesheet. Eng. Fail. Anal. 2017;78:55–66. doi: 10.1016/j.engfailanal.2017.03.007. DOI

Shabani Mahalli M., Ahmadi A., Sabouri M. Investigation of intergranular stress corrosion cracking in a failed 347H stainless steel furnace tube. Eng. Fail. Anal. 2022;142:106835. doi: 10.1016/j.engfailanal.2022.106835. DOI

Turnbull A., Mingard K., Lord J.D., Roebuck B., Tice D.R., Mottershead K.J., Fairweather N.D., Bradbury A.K. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros. Sci. 2011;53:3398–3415. doi: 10.1016/j.corsci.2011.06.020. DOI

Ali M.A., Baggash M., Rustamov J., Abdulghafor R., Abdo N.A.D.N., Abdo M.H., Mohammed T.S., Hasan A.A., Abdo A.N., Turaev S., et al. An automatic visual inspection of oil tanks exterior surface using unmanned aerial vehicle with image processing and cascading fuzzy logic algorithms. Drones. 2023;7:133. doi: 10.3390/drones7020133. DOI

Cao Q., Pojtanabuntoeng T., Esmaily M., Thomas S., Brameld M., Amer A., Birbilis N. A review of corrosion under insulation: A critical issue in the oil and gas industry. Metals. 2022;12:561. doi: 10.3390/met12040561. DOI

Rachman A., Ratnayake R.C. Machine learning approach for risk-based inspection screening assessment. Reliab. Eng. Syst. Saf. 2019;185:518–532. doi: 10.1016/j.ress.2019.02.008. DOI

Gore P., Sujata M., Bhaumik S.K. Stress corrosion cracking of ring type joint of reactor pipeline of a hydrocracker unit. J. Fail. Anal. Prev. 2014;14:307–313. doi: 10.1007/s11668-014-9820-8. DOI

Borgioli F. The corrosion behavior in different environments of austenitic stainless steels subjected to thermochemical surface treatments at low temperatures: An overview. Metals. 2023;13:776. doi: 10.3390/met13040776. DOI

Bradley S.A., Mucek M.W., Anada H., Osuki T. Alloy for resistance to polythionic acid stress corrosion cracking for hydroprocessing applications. Mater. Des. 2016;110:296–303. doi: 10.1016/j.matdes.2016.07.067. DOI

Singh R. Influence of cold rolling on sensitization and intergranular stress corrosion cracking of AISI 304 aged at 500 °C. J. Mater. Process. Technol. 2008;206:286–293. doi: 10.1016/j.jmatprotec.2007.12.029. DOI

Choudary N.V., Rao P.V.C. Polythionic acid corrosion in refinery hydroprocessors. Mater. Perform. 2010;49:62–66.

Almubarak A., Belkharchouche M., Hussain A. Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries. Anti-Corros. Method. 2010;57:58–64. doi: 10.1108/00035591011028014. DOI

Lobley G.R. Stress corrosion cracking: Cases in refinery equipment. In: Shipilov S.A., editor. Environment-Induced Cracking of Materials. Elsevier; Amsterdam, The Netherlands: 2008. pp. 401–410. DOI

Zomorodian A., Behnood A. Review of corrosion inhibitors in reinforced concrete: Conventional and green materials. Buildings. 2023;13:1170. doi: 10.3390/buildings13051170. DOI

Fang J., Li J. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J. Mol. Struct. 2002;593:179–185. doi: 10.1016/S0166-1280(02)00316-0. DOI

Revie R.W. Uhlig’s Corrosion Handbook. Volume 51. John Wiley & Sons; Hoboken, NJ, USA: 2011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...