Factors affecting diffusion of polar organic compounds in agarose hydrogel applied to control mass transfer in passive samplers

. 2023 Dec ; 30 (58) : 122470-122481. [epub] 20231116

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37968489

Grantová podpora
LM2018121 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/ 17_043/0009632 Ministerstvo Školství, Mládeže a Tělovýchovy
GF22-06020K Grantová Agentura České Republiky
857560 Horizon 2020 Framework Programme

Odkazy

PubMed 37968489
DOI 10.1007/s11356-023-30929-3
PII: 10.1007/s11356-023-30929-3
Knihovny.cz E-zdroje

Diffusive hydrogel-based passive sampler (HPS) based on diffusive gradients in thin films (DGT) is designed for monitoring polar organic contaminants in the aquatic environment. DGT technique controls the compound's overall uptake rate by adding a hydrogel layer of known thickness, which minimizes the importance of the resistive water boundary layer in the compound uptake process. In this work, we investigated several factors which may influence the diffusion of a range of aquatic contaminants in 1.5% agarose hydrogel. Diffusion in hydrogel was tested using the sheet stacking method. We demonstrated that a thin nylon netting incorporated into the diffusive hydrogel for mechanical strengthening does not significantly affect the diffusion of 11 perfluoroalkyl compounds. Further, we investigated the effect of pH in the range from 3 to 11 on the diffusion of a range of 39 aromatic amines (AAs) -36 aromatic, 2 aliphatic, and azobenzene in hydrogel. AAs were chosen as representatives of compounds with pH-dependent dissociation in water. Analysis of variance showed no significant difference in mean diffusion coefficient log D value at five pH values. The demonstration that the diffusion coefficient D and thus the sampling rate Rs are independent on pH simplifies the interpretation of data from field studies because we can neglect the influence of pH on the Rs. log D values (m2 s-1) of tested AAs ranged from to - 9.77 for 3,3'-dimethylbenzidine to - 9.19 for azobenzene. A negative correlation of log D with molar mass (log M) and molecular volume (log Vm) was observed (R = - 0.57 and - 0.56, respectively). The diffusion coefficient presents a critical parameter for the sampling rate estimation of HPS. Theoretical sampling rates Rs of AAs were calculated for a HPS using the average D values. Theoretical Rs values calculated for AAs at 22°C ranged from 29 mL day-1 for 3,3'-dimethylbenzidine to 106 mL day-1 for 2-aminopyridine. Our calculated values of Rs are in the same range as those already published for a range of low-molecular polar organic contaminants, which supports the possibility of deriving sampler performance parameters in the field from laboratory-derived diffusivity of analytes in hydrogel.

Zobrazit více v PubMed

Alygizakis NA, Urík J, Beretsou VG et al (2020) Evaluation of chemical and biological contaminants of emerging concern in treated wastewater intended for agricultural reuse. Environ Int 138:105597. https://doi.org/10.1016/j.envint.2020.105597 DOI

Belles A, Alary C, Aminot Y et al (2017) Calibration and response of an agarose gel based passive sampler to record short pulses of aquatic organic pollutants. Talanta 165:1–9. https://doi.org/10.1016/j.talanta.2016.12.010 DOI

Bonnaud B, Miège C, Daval A et al (2022) Determination of diffusion coefficients in agarose and polyacrylamide gels for 112 organic chemicals for passive sampling by organic diffusive gradients in thin films (o-DGT). Environ Sci Pollut Res 29:25799–25809. https://doi.org/10.1007/s11356-021-17563-7 DOI

Challis JK, Hanson ML, Wong CS (2016) Development and calibration of an organic-diffusive gradients in thin films aquatic passive sampler for a diverse suite of polar organic contaminants. Anal Chem 88:10583–10591. https://doi.org/10.1021/acs.analchem.6b02749 DOI

Charlestra L, Amirbahman A, Courtemanch DL et al (2012) Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions. Environ Pollut 169:98–104. https://doi.org/10.1016/j.envpol.2012.05.001 DOI

Chen CE, Zhang H, Jones KC (2012) A novel passive water sampler for in situ sampling of antibiotics. J Environ Monit 14:1523–1530. https://doi.org/10.1039/c2em30091e DOI

Chen W, Li Y, Chen CE et al (2017) DGT passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters. Environ Sci Technol 51:13274–13281. https://doi.org/10.1021/acs.est.7b03940 DOI

Chen W, Pan S, Cheng H et al (2018) Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res 137:211–219. https://doi.org/10.1016/j.watres.2018.03.029 DOI

Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548. https://doi.org/10.1038/367546a0 DOI

Djomte VT, Taylor RB, Chen S et al (2018) Effects of hydrodynamic conditions and temperature on polar organic chemical integrative sampling rates. Environ Toxicol Chem 37:2331–2339. https://doi.org/10.1002/etc.4225 DOI

Dong J, Fan H, Sui D et al (2014) Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer. Anal Chim Acta 822:69–77. https://doi.org/10.1016/j.aca.2014.03.015 DOI

Fialová P, Grabic R, Grabicová K et al (2022) Performance evaluation of a diffusive hydrogel-based passive sampler for monitoring of polar organic compounds in wastewater. Sci Total Environ 864:161071. https://doi.org/10.1016/j.scitotenv.2022.161071 DOI

Guan DX, Li YQ, Yu NY et al (2018) In situ measurement of perfluoroalkyl substances in aquatic systems using diffusive gradients in thin-films technique. Water Res 144:162–171. https://doi.org/10.1016/j.watres.2018.07.031 DOI

Guibal R, Buzier R, Charriau A et al (2017) Passive sampling of anionic pesticides using the diffusive gradients in thin films technique (DGT). Anal Chim Acta 966:1–10. https://doi.org/10.1016/j.aca.2017.02.007 DOI

Guibal R, Buzier R, Lissalde S, Guibaud G (2019) Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: an overview of o-DGT passive samplers. Sci Total Environ 693:133537. https://doi.org/10.1016/j.scitotenv.2019.07.343 DOI

Guo W, Van Langenhove K, Denison MS et al (2017) Estrogenic activity measurements in water using diffusive gradients in thin-film coupled with an estrogen bioassay. Anal Chem 89:13357–13364. https://doi.org/10.1021/acs.analchem.7b03537 DOI

Karásková P, Venier M, Melymuk L et al (2016) Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environ Int 94:315–324. https://doi.org/10.1016/j.envint.2016.05.031 DOI

Ren S, Tao J, Tan F et al (2018) Diffusive gradients in thin films based on MOF-derived porous carbon binding gel for in-situ measurement of antibiotics in waters. Sci Total Environ 645:482–490. https://doi.org/10.1016/j.scitotenv.2018.07.013 DOI

Roe R-J, Bair HE, Gieniewski C (1974) Solubility and diffusion coefficient of antioxidants in polyethylene. J Appl Polym Sci 18:843–856. https://doi.org/10.1002/app.1974.070180319 DOI

Rusina TP, Smedes F, Klanova J (2010) Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polyethylene polymers. J Appl Polym Sci 116:1803–1810. https://doi.org/10.1002/app.31704 DOI

Stroski KM, Challis JK, Wong CS (2018) The influence of pH on sampler uptake for an improved configuration of the organic-diffusive gradients in thin films passive sampler. Anal Chim Acta 1018:45–53. https://doi.org/10.1016/j.aca.2018.02.074 DOI

Trommetter G, Dumoulin D, Billon G (2021) Development and validation of DGT passive samplers for the quantification of Ir, Pd, Pt, Rh and Ru: a challenging application in waters impacted by urban activities. Talanta 223:121707. https://doi.org/10.1016/j.talanta.2020.121707 DOI

Urík J, Paschke A, Vrana B (2020) Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers. Chemosphere 249:126183. https://doi.org/10.1016/j.chemosphere.2020.126183 DOI

Urík J, Vrana B (2019) An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ Sci Pollut Res 15273–15284. https://doi.org/10.1007/s11356-019-04843-6

Verhagen R, O’Malley E, Smedes F et al (2019) Calibration parameters for the passive sampling of organic UV filters by silicone; diffusion coefficients and silicone–water partition coefficients. Chemosphere 223:731–737. https://doi.org/10.1016/j.chemosphere.2019.02.077 DOI

Vermeirssen ELM, Asmin J, Escher BI et al (2008) The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Empore™ SDB-RPS disks. J Environ Monit 10:119–128. https://doi.org/10.1039/b710790k DOI

Wang L, Liu R, Liu X, Gao H (2020) Sampling rate of polar organic chemical integrative sampler (POCIS): influence factors and calibration methods. Appl Sci 10. https://doi.org/10.3390/app10165548

Wang P, Challis JK, Luong KH et al (2021) Calibration of organic-diffusive gradients in thin films (o-DGT) passive samplers for perfluorinated alkyl acids in water. Chemosphere 263:128325. https://doi.org/10.1016/j.chemosphere.2020.128325

Warnken KW, Zhang H, Davison W (2007) Chapter 11 In situ monitoring and dynamic speciation measurements in solution using DGT. Compr Anal Chem 48:251–278. https://doi.org/10.1016/S0166-526X(06)48011-9 DOI

Xie H, Chen J, Chen Q et al (2018a) Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Sci Total Environ 618:1605–1612. https://doi.org/10.1016/j.scitotenv.2017.09.330 DOI

Xie H, Chen Q, Chen J et al (2018b) Investigation and application of diffusive gradients in thin-films technique for measuring endocrine disrupting chemicals in seawaters. Chemosphere 200:351–357. https://doi.org/10.1016/j.chemosphere.2018.02.096 DOI

Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app DOI

You N, Li JY, Fan HT, Shen H (2019) In-situ sampling of nitrophenols in industrial wastewaters using diffusive gradients in thin films based on lignocellulose-derived activated carbons. J Adv Res 15:77–86. https://doi.org/10.1016/j.jare.2018.09.005 DOI

Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400. https://doi.org/10.1021/ac00115a005 DOI

Zhang T, Li B (2011) Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol 41:951–998. https://doi.org/10.1080/10643380903392692 DOI

Zhang Y, Zhang T, Guo C et al (2018) Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. Sci Total Environ 618:284–290. https://doi.org/10.1016/j.scitotenv.2017.11.068 DOI

Zheng JL, Guan DX, Luo J et al (2015) Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters. Anal Chem 87:801–807. https://doi.org/10.1021/ac503814j DOI

Zou YT, Fang Z, Li Y et al (2018) Novel method for in situ monitoring of organophosphorus flame retardants in waters. Anal Chem 90:10016–10023. https://doi.org/10.1021/acs.analchem.8b02480 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...