POMBOX: A Fission Yeast Cloning Toolkit for Molecular and Synthetic Biology

. 2024 Feb 16 ; 13 (2) : 558-567. [epub] 20231122

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37991801

The fission yeast Schizosaccharomyces pombe is a popular model organism in molecular biology and cell physiology. With its ease of genetic manipulation and growth, supported by in-depth functional annotations in the PomBase database and genome-wide metabolic models,S. pombe is an attractive option for synthetic biology applications. However,S. pombe currently lacks modular tools for generating genetic circuits with more than 1 transcriptional unit. We developed a toolkit to address this gap. Adapted from the MoClo-YTK plasmid kit for Saccharomyces cerevisiae and using the same modular cloning grammar, our POMBOX toolkit is designed to facilitate fast, efficient, and modular construction of genetic circuits inS. pombe. It allows for interoperability when working with DNA sequences that are functional in bothS. cerevisiae and S. pombe (e.g., protein tags, antibiotic resistance cassettes, and coding sequences). Moreover, POMBOX enables the modular assembly of multigene pathways and increases the possible pathway length from 6 to 12 transcriptional units. We also adapted the stable integration vector homology arms to Golden Gate assembly and tested the genomic integration success rates depending on different sequence sizes, from 4 to 24 kb. We included 14 S. pombe promoters that we characterized using two fluorescent proteins, in both minimally defined (EMM2─Edinburgh minimal media) and complex (YES─yeast extract with supplements) media. Then, we examined the efficacy of 6 S. cerevisiae and 6 synthetic terminators in S. pombe. Finally, we used the POMBOX kit for a synthetic biology application in metabolic engineering and expressed plant enzymes in S. pombe to produce specialized metabolite precursors, namely, methylxanthine, amorpha-4,11-diene, and cinnamic acid from the purine, mevalonate, and aromatic amino acid pathways.

Zobrazit více v PubMed

Hoffman C. S.; Wood V.; Fantes P. A. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces Pombe Model System. Genetics 2015, 201 (2), 403–423. 10.1534/genetics.115.181503. PubMed DOI PMC

Harris M. A.; Rutherford K. M.; Hayles J.; Lock A.; Bähler J.; Oliver S. G.; Mata J.; Wood V. Fission Stories: Using PomBase to Understand Schizosaccharomyces Pombe Biology. Genetics 2022, 220 (4), iyab222.10.1093/genetics/iyab222. PubMed DOI PMC

Becker J.; Rohles C. M.; Wittmann C. Metabolically Engineered Corynebacterium Glutamicum for Bio-Based Production of Chemicals, Fuels, Materials, and Healthcare Products. Metab. Eng. 2018, 50, 122–141. 10.1016/j.ymben.2018.07.008. PubMed DOI

Nielsen J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019, 14 (9), e180042110.1002/biot.201800421. PubMed DOI

Yang D.; Park S. Y.; Park Y. S.; Eun H.; Lee S. Y. Metabolic Engineering of Escherichia Coli for Natural Product Biosynthesis. Trends Biotechnol. 2020, 38 (7), 745–765. 10.1016/j.tibtech.2019.11.007. PubMed DOI

Bally J.; Jung H.; Mortimer C.; Naim F.; Philips J. G.; Hellens R.; Bombarely A.; Goodin M. M.; Waterhouse P. M. The Rise and Rise of Nicotiana Benthamiana: A Plant for All Reasons. Annu. Rev. Phytopathol. 2018, 56, 405–426. 10.1146/annurev-phyto-080417-050141. PubMed DOI

Hedges S. B. The Origin and Evolution of Model Organisms. Nat. Rev. Genet. 2002, 3 (11), 838–849. 10.1038/nrg929. PubMed DOI

Schwecke T.; Göttling K.; Durek P.; Dueñas I.; Käufer N. F.; Zock-Emmenthal S.; Staub E.; Neuhof T.; Dieckmann R.; von Döhren H. Nonribosomal Peptide Synthesis in Schizosaccharomyces Pombe and the Architectures of Ferrichrome-Type Siderophore Synthetases in Fungi. Chembiochem 2006, 7 (4), 612–622. 10.1002/cbic.200500301. PubMed DOI

Takayama S.; Ozaki A.; Konishi R.; Otomo C.; Kishida M.; Hirata Y.; Matsumoto T.; Tanaka T.; Kondo A. Enhancing 3-Hydroxypropionic Acid Production in Combination with Sugar Supply Engineering by Cell Surface-Display and Metabolic Engineering of Schizosaccharomyces Pombe. Microb. Cell Factories 2018, 17 (1), 176.10.1186/s12934-018-1025-5. PubMed DOI PMC

Ozaki A.; Konishi R.; Otomo C.; Kishida M.; Takayama S.; Matsumoto T.; Tanaka T.; Kondo A. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metab. Eng. Commun. 2017, 5, 60–67. 10.1016/j.meteno.2017.08.002. PubMed DOI PMC

Yazawa H.; Kumagai H.; Uemura H. Secretory Production of Ricinoleic Acid in Fission Yeast Schizosaccharomyces Pombe. Appl. Microbiol. Biotechnol. 2013, 97 (19), 8663–8671. 10.1007/s00253-013-5060-1. PubMed DOI

Hansen E. H.; Møller B. L.; Kock G. R.; Bünner C. M.; Kristensen C.; Jensen O. R.; Okkels F. T.; Olsen C. E.; Motawia M. S.; Hansen J. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces Pombe) and Baker’s Yeast (Saccharomyces Cerevisiae). Appl. Environ. Microbiol. 2009, 75 (9), 2765–2774. 10.1128/AEM.02681-08. PubMed DOI PMC

Neunzig I.; Widjaja M.; Peters F. T.; Maurer H. H.; Hehn A.; Bourgaud F.; Bureik M. Coexpression of CPR from Various Origins Enhances Biotransformation Activity of Human CYPs in S. Pombe. Appl. Biochem. Biotechnol. 2013, 170 (7), 1751–1766. 10.1007/s12010-013-0303-2. PubMed DOI

Jakočiu̅nas T.; Rajkumar A. S.; Zhang J.; Arsovska D.; Rodriguez A.; Jendresen C. B.; Skjødt M. L.; Nielsen A. T.; Borodina I.; Jensen M. K.; Keasling J. D. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces Cerevisiae. ACS Synth. Biol. 2015, 4 (11), 1226–1234. 10.1021/acssynbio.5b00007. PubMed DOI

Young R.; Haines M.; Storch M.; Freemont P. S. Combinatorial Metabolic Pathway Assembly Approaches and Toolkits for Modular Assembly. Metab. Eng. 2021, 63, 81–101. 10.1016/j.ymben.2020.12.001. PubMed DOI

Gao S.; Zhou H.; Zhou J.; Chen J. Promoter-Library-Based Pathway Optimization for Efficient (2)-Naringenin Production from -Coumaric Acid in Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68 (25), 6884–6891. 10.1021/acs.jafc.0c01130. PubMed DOI

Wang Z.; Wei L.; Sheng Y.; Zhang G. Yeast Synthetic Terminators: Fine Regulation of Strength through Linker Sequences. Chembiochem 2019, 20 (18), 2383–2389. 10.1002/cbic.201900163. PubMed DOI

Engler C.; Kandzia R.; Marillonnet S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS One 2008, 3 (11), e364710.1371/journal.pone.0003647. PubMed DOI PMC

Kakui Y.; Sunaga T.; Arai K.; Dodgson J.; Ji L.; Csikász-Nagy A.; Carazo-Salas R.; Sato M. Module-Based Construction of Plasmids for Chromosomal Integration of the Fission Yeast Schizosaccharomyces pombe. Open Biol. 2015, 5 (6), 150054.10.1098/rsob.150054. PubMed DOI PMC

Vještica A.; Marek M.; Nkosi P. J.; Merlini L.; Liu G.; Bérard M.; Billault-Chaumartin I.; Martin S. G. A Toolbox of Stable Integration Vectors in the Fission Yeast. J. Cell Sci. 2020, 133 (1), jcs240754.10.1242/jcs.240754. PubMed DOI

Lee M. E.; DeLoache W. C.; Cervantes B.; Dueber J. E. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth. Biol. 2015, 4 (9), 975–986. 10.1021/sb500366v. PubMed DOI

McCarty N. S.; Shaw W. M.; Ellis T.; Ledesma-Amaro R. Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast. ACS Synth. Biol. 2019, 8 (4), 906–910. 10.1021/acssynbio.9b00041. PubMed DOI

Rajkumar A. S.; Varela J. A.; Juergens H.; Daran J.-M. G.; Morrissey J. P. Biological Parts for Kluyveromyces marxianus Synthetic Biology. Front. Bioeng. Biotechnol. 2019, 7, 97.10.3389/fbioe.2019.00097. PubMed DOI PMC

Otto M.; Skrekas C.; Gossing M.; Gustafsson J.; Siewers V.; David F. Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synth. Biol. 2021, 10 (12), 3461–3474. 10.1021/acssynbio.1c00408. PubMed DOI PMC

Cámara E.; Lenitz I.; Nygård Y. A CRISPR Activation and Interference Toolkit for Industrial Saccharomyces Cerevisiae Strain KE6–12. Sci. Rep. 2020, 10 (1), 14605.10.1038/s41598-020-71648-w. PubMed DOI PMC

Torello Pianale L.; Rugbjerg P.; Olsson L. Real-Time Monitoring of the Yeast Intracellular State During Bioprocesses With a Toolbox of Biosensors. Front. Microbiol. 2022, 12, 802169.10.3389/fmicb.2021.802169. PubMed DOI PMC

An-Adirekkun J. M.; Stewart C. J.; Geller S. H.; Patel M. T.; Melendez J.; Oakes B. L.; Noyes M. B.; McClean M. N. A Yeast Optogenetic Toolkit (yOTK) for Gene Expression Control in Saccharomyces Cerevisiae. Biotechnol. Bioeng. 2020, 117 (3), 886–893. 10.1002/bit.27234. PubMed DOI PMC

Billerbeck S.; Prins R. C.; Marquardt M. A Modular Cloning Toolkit Including CRISPRi for the Engineering of the Human Fungal Pathogen and Biotechnology Host Candida glabrata. ACS Synth. Biol. 2023, 12, 1358–1363. 10.1021/acssynbio.2c00560. PubMed DOI PMC

Potapov V.; Ong J. L.; Kucera R. B.; Langhorst B. W.; Bilotti K.; Pryor J. M.; Cantor E. J.; Canton B.; Knight T. F.; Evans T. C. Jr; Lohman G. J. S. Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly. ACS Synth. Biol. 2018, 7 (11), 2665–2674. 10.1021/acssynbio.8b00333. PubMed DOI

Potapov V.; Ong J. L.; Langhorst B. W.; Bilotti K.; Cahoon D.; Canton B.; Knight T. F.; Evans T. C.; Lohman G. J. S. A Single-Molecule Sequencing Assay for the Comprehensive Profiling of T4 DNA Ligase Fidelity and Bias during DNA End-Joining. Nucleic Acids Res. 2018, 46 (13), e7910.1093/nar/gky303. PubMed DOI PMC

Zhang J.; Hansen L. G.; Gudich O.; Viehrig K.; Lassen L. M. M.; Schrübbers L.; Adhikari K. B.; Rubaszka P.; Carrasquer-Alvarez E.; Chen L.; D’Ambrosio V.; Lehka B.; Haidar A. K.; Nallapareddy S.; Giannakou K.; Laloux M.; Arsovska D.; Jørgensen M. A. K.; Chan L. J. G.; Kristensen M.; Christensen H. B.; Sudarsan S.; Stander E. A.; Baidoo E.; Petzold C. J.; Wulff T.; O’Connor S. E.; Courdavault V.; Jensen M. K.; Keasling J. D. A Microbial Supply Chain for Production of the Anti-Cancer Drug Vinblastine. Nature 2022, 609 (7926), 341–347. 10.1038/s41586-022-05157-3. PubMed DOI PMC

Pryor J. M.; Potapov V.; Bilotti K.; Pokhrel N.; Lohman G. J. S. Rapid 40 Kb Genome Construction from 52 Parts through Data-Optimized Assembly Design. ACS Synth. Biol. 2022, 11 (6), 2036–2042. 10.1021/acssynbio.1c00525. PubMed DOI PMC

Lyons E.; Sheridan P.; Tremmel G.; Miyano S.; Sugano S. Large-Scale DNA Barcode Library Generation for Biomolecule Identification in High-Throughput Screens. Sci. Rep. 2017, 7 (1), 13899.10.1038/s41598-017-12825-2. PubMed DOI PMC

Matsuyama A.; Shirai A.; Yoshida M. A Series of Promoters for Constitutive Expression of Heterologous Genes in Fission Yeast. Yeast 2008, 25 (5), 371–376. 10.1002/yea.1593. PubMed DOI

Thodberg M.; Thieffry A.; Bornholdt J.; Boyd M.; Holmberg C.; Azad A.; Workman C. T.; Chen Y.; Ekwall K.; Nielsen O.; Sandelin A. Comprehensive Profiling of the Fission Yeast Transcription Start Site Activity during Stress and Media Response. Nucleic Acids Res. 2019, 47 (4), 1671–1691. 10.1093/nar/gky1227. PubMed DOI PMC

Nagai T.; Ibata K.; Park E. S.; Kubota M.; Mikoshiba K.; Miyawaki A. A Variant of Yellow Fluorescent Protein with Fast and Efficient Maturation for Cell-Biological Applications. Nat. Biotechnol. 2002, 20 (1), 87–90. 10.1038/nbt0102-87. PubMed DOI

Lam A. J.; St-Pierre F.; Gong Y.; Marshall J. D.; Cranfill P. J.; Baird M. A.; McKeown M. R.; Wiedenmann J.; Davidson M. W.; Schnitzer M. J.; Tsien R. Y.; Lin M. Z. Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins. Nat. Methods 2012, 9 (10), 1005–1012. 10.1038/nmeth.2171. PubMed DOI PMC

Ito Y.; Terai G.; Ishigami M.; Hashiba N.; Nakamura Y.; Bamba T.; Kumokita R.; Hasunuma T.; Asai K.; Ishii J.; Kondo A. Exchange of Endogenous and Heterogeneous Yeast Terminators in Pichia Pastoris to Tune mRNA Stability and Gene Expression. Nucleic Acids Res. 2020, 48 (22), 13000–13012. 10.1093/nar/gkaa1066. PubMed DOI PMC

Curran K. A.; Morse N. J.; Markham K. A.; Wagman A. M.; Gupta A.; Alper H. S. Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast. ACS Synth. Biol. 2015, 4 (7), 824–832. 10.1021/sb5003357. PubMed DOI

Guo Z.; Sherman F. Signals Sufficient for 3′-End Formation of Yeast mRNA. Mol. Cell. Biol. 1996, 16 (6), 2772–2776. 10.1128/MCB.16.6.2772. PubMed DOI PMC

McKeague M.; Wang Y.-H.; Cravens A.; Win M. N.; Smolke C. D. Engineering a Microbial Platform for de Novo Biosynthesis of Diverse Methylxanthines. Metab. Eng. 2016, 38, 191–203. 10.1016/j.ymben.2016.08.003. PubMed DOI PMC

Petersen J.; Russell P. Growth and the Environment of Schizosaccharomyces Pombe. Cold Spring Harb. Protoc. 2016, 2016 (3), db.top079764.10.1101/pdb.top079764. PubMed DOI PMC

Lõoke M.; Kristjuhan K.; Kristjuhan A. Extraction of Genomic DNA from Yeasts for PCR-Based Applications. Biotechniques 2011, 50 (5), 325–328. 10.2144/000113672. PubMed DOI PMC

Murray J. M.; Watson A. T.; Carr A. M. Transformation of Schizosaccharomyces Pombe: Lithium Acetate/Dimethyl Sulfoxide Procedure. Cold Spring Harb. Protoc. 2016, 2016 (4), db.prot090969.10.1101/pdb.prot090969. PubMed DOI

Schmid R.; Heuckeroth S.; Korf A.; Smirnov A.; Myers O.; Dyrlund T. S.; Bushuiev R.; Murray K. J.; Hoffmann N.; Lu M.; Sarvepalli A.; Zhang Z.; Fleischauer M.; Dührkop K.; Wesner M.; Hoogstra S. J.; Rudt E.; Mokshyna O.; Brungs C.; Ponomarov K.; Mutabdžija L.; Damiani T.; Pudney C. J.; Earll M.; Helmer P. O.; Fallon T. R.; Schulze T.; Rivas-Ubach A.; Bilbao A.; Richter H.; Nothias L.-F.; Wang M.; Orešič M.; Weng J.-K.; Böcker S.; Jeibmann A.; Hayen H.; Karst U.; Dorrestein P. C.; Petras D.; Du X.; Pluskal T. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023, 41 (4), 447–449. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace