Phenotype and oxidative burst of low-density neutrophil subpopulations are altered in common variable immunodeficiency patients
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MUNI/A/1098/2022
Lékařská fakulta, Masarykova univerzita
MUNI/A/1244/2021
Lékařská fakulta, Masarykova univerzita
CZ.02.1.01/0.0/0.0/16_019/0000868
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
NU21-06-00408
Ministerstvo Zdravotnictví Ceské Republiky
European Social Fund and European Regional Development Fund-ENOCH
PubMed
37997558
DOI
10.1002/cyto.b.22150
Knihovny.cz E-resources
- Keywords
- common variable immunodeficiency, intravenous immunoglobulins, low‐density neutrophils, oxidative burst, suppression,
- MeSH
- Common Variable Immunodeficiency * MeSH
- Phenotype MeSH
- Humans MeSH
- Neutrophils * MeSH
- Flow Cytometry MeSH
- Respiratory Burst MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Common variable immunodeficiency disorder (CVID) is the most common form of primary antibody immunodeficiency. Due to low antibody levels, CVID patients receive intravenous or subcutaneous immunoglobulin replacement therapy as treatment. CVID is associated with the chronic activation of granulocytes, including an increased percentage of low-density neutrophils (LDNs). In this study, we examined changes in the percentage of LDNs and the expression of their surface markers in 25 patients with CVID and 27 healthy donors (HD) after in vitro stimulation of whole blood using IVIg. An oxidative burst assay was used to assess the functionality of LDNs. CVID patients had increased both relative and absolute LDN counts with a higher proportion of mLDNs compared to iLDNs, distinguished based on the expression of CD10 and CD16. Immature LDNs in the CVID and HD groups had significantly reduced oxidative burst capacity compared to mature LDNs. Interestingly we observed reduced oxidative burst capacity, reduced expression of CD10 after stimulation of WB, and higher expression of PD-L1 in mature LDNs in CVID patients compared to HD cells. Our data indicate that that the functional characteristics of LDNs are closely linked to their developmental stage. The observed reduction in oxidative burst capacity in mLDNs in CVID patients could contribute to an increased susceptibility to recurrent bacterial infections among CVID patients.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Clinical Immunology and Allergology St Anne's University Hospital Brno Czech Republic
Institute of Hematology and Blood Transfusion Prague Czech Republic
See more in PubMed
Barbosa, R. R., Silva, S. P., Silva, S. L., Tendeiro, R., Melo, A. C., Pedro, E., Barbosa, M. P., Santos, M. C. P., Victorino, R. M. M., & Sousa, A. E. (2012). Monocyte activation is a feature of common variable immunodeficiency irrespective of plasma lipopolysaccharide levels. Clinical and Experimental Immunology, 169, 263–272.
Blanco‐Camarillo, C., Alemán, O. R., & Rosales, C. (2021). Low‐density neutrophils in healthy individuals display a mature primed phenotype. Frontiers in Immunology, 12, 672520.
Bonilla, F. A., Barlan, I., Chapel, H., Costa‐Carvalho, B. T., Cunningham‐Rundles, C., de la Morena, M. T., de la Morena, M. T., Espinosa‐Rosales, F. J., Hammarström, L., Nonoyama, S., Quinti, I., Routes, J. M., Tang, M. L. K., & Warnatz, K. (2016). International consensus document (ICON): Common variable immunodeficiency disorders. The Journal of Allergy and Clinical Immunology in Practice, 4, 38–59.
Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic Polymorphonuclear leukocyte. Blood, 89, 3503–3521.
Bouma, G., Ancliff, P. J., Thrasher, A. J., & Burns, S. O. (2010). Recent advances in the understanding of genetic defects of neutrophil number and function. British Journal of Haematology, 151, 312–326.
Bowers, N. L., Helton, E. S., Huijbregts, R. P. H., Goepfert, P. A., Heath, S. L., & Hel, Z. (2014). Immune suppression by neutrophils in HIV‐1 infection: Role of PD‐L1/PD‐1 pathway. PLoS Pathogens, 10, 1.
Brandau, S., Trellakis, S., Bruderek, K., Schmaltz, D., Steller, G., Elian, M., Suttmann, H., Schenck, M., Welling, J., Zabel, P., & Lang, S. (2011). Myeloid‐derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. Journal of Leukocyte Biology, 89, 311–317.
Carmona‐Rivera, C., & Kaplan, M. J. (2013). Low density granulocytes: A distinct class of neutrophils in systemic autoimmunity. Seminars in Immunopathology, 35, 455–463.
Casulli, S., Coignard‐Biehler, H., Amazzough, K., Shoai‐Tehrani, M., Bayry, J., Mahlaoui, N., Elbim, C., & Kaveri, S. V. (2014). Defective functions of polymorphonuclear neutrophils in patients with common variable immunodeficiency. Immunologic Research, 60, 69–76.
Casulli, S., Topçu, S., Fattoum, L., von Gunten, S., Simon, H. U., Teillaud, J. L., Bayry, J., Kaveri, S. V., & Elbim, C. (2011). A differential concentration‐dependent effect of IVIg on neutrophil functions: Relevance for anti‐microbial and anti‐inflammatory mechanisms. PLoS One, 6, e26469.
Chandra, A., Zhang, F., Gilmour, K. C., Webster, D., Plagnol, V., Kumararatne, D. S., Burns, S. O., Nejentsev, S., & Thrasher, A. J. (2016). Common variable immunodeficiency and natural killer cell lymphopenia caused by Ets‐binding site mutation in the IL‐2 receptor γ (IL2RG) gene promoter. Journal of Allergy and Clinical Immunology, 137, 940–942.e4.
Chapel, H., & Cunningham‐Rundles, C. (2009). Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. British Journal of Haematology, 145, 709–727.
Chen, Y., & Junger, W. G. (2012). Measurement of oxidative burst in neutrophils. Methods in Molecular Biology, 844, 115–124.
Coxon, A., Cullere, X., Knight, S., Sethi, S., Wakelin, M. W., Stavrakis, G., Luscinskas, F. W., & Mayadas, T. N. (2001). Fc gamma RIII mediates neutrophil recruitment to immune complexes: A mechanism for neutrophil accumulation in immune‐mediated inflammation. Immunity, 14, 693–704.
Darcy, C. J., Minigo, G., Piera, K. A., Davis, J. S., McNeil, Y. R., Chen, Y., Volkheimer, A. D., Weinberg, J., Anstey, N. M., & Woodberry, T. (2014). Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Critical Care, 18, R163.
Dolcino, M., Patuzzo, G., Barbieri, A., Tinazzi, E., Rizzi, M., Beri, R., Argentino, G., Ottria, A., Lunardi, C., & Puccetti, A. (2014). Gene expression profiling in peripheral blood mononuclear cells of patients with common variable immunodeficiency: Modulation of adaptive immune response following intravenous immunoglobulin therapy. PLoS One, 9, e97571.
Dolman, C., Thorpe, S. J., & Thorpe, R. (2001). Enhanced efficacy of anti‐D immunoglobulin for treating ITP is not explained by higher immunoglobulin polymer content. Biologicals, 29, 75–79.
Dominguez‐Soto, A., Simon‐Fuentes, M., de las Casas‐Engel, M., Cuevas, V. D., Lopez‐Bravo, M., Dominguez‐Andres, J., et al. (2018). IVIg promote cross‐tolerance against inflammatory stimuli in vitro and in vivo. Journal of Immunology, 201, 41–52.
Eichelberger, K. R., & Goldman, W. E. (2020). Manipulating neutrophil degranulation as a bacterial virulence strategy. PLoS Pathogens, 16, e1009054.
Fernandes, M. J., Lachance, G., Paré, G., Rollet‐Labelle, E., & Naccache, P. H. (2005). Signaling through CD16b in human neutrophils involves the Tec family of tyrosine kinases. Journal of Leukocyte Biology, 78, 524–532.
Hardisty, G. R., Llanwarne, F., Minns, D., Gillan, J. L., Davidson, D. J., Findlay, E. G., et al. (2021). High purity isolation of low density neutrophils casts doubt on their exceptionality in health and disease. Frontiers in Immunology, 12, 625922.
Hel, Z., Huijbregts, R. P. H., Xu, J., Nechvatalova, J., Vlkova, M., & Litzman, J. (2014). Altered serum cytokine signature in common variable immunodeficiency. Journal of Clinical Immunology, 34, 971–978.
Kaneko, T., Stearns‐Kurosawa, D. J., Taylor, F., Jr., Twigg, M., Osaki, K., Kinasewitz, G. T., et al. (2003). Reduced neutrophil CD10 expression in nonhuman primates and humans after in vivo challenge with E. coli or lipopolysaccharide. Shock (Augusta, GA), 20, 130–137.
Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD‐1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704.
Kessel, A., Peri, R., Haj, T., Snir, A., Slobodin, G., Sabo, E., Rosner, I., Shoenfeld, Y., & Toubi, E. (2011). IVIg attenuates TLR‐9 activation in B cells from SLE patients. Journal of Clinical Immunology, 31, 30–38.
Kozicky, L. K., Menzies, S. C., Zhao, Z. Y., Vira, T., Harnden, K., Safari, K., del Bel, K. L., Turvey, S. E., & Sly, L. M. (2018). IVIg and LPS Co‐stimulation induces IL‐10 production by human monocytes, which is compromised by a FcγRIIA disease‐associated gene variant. Frontiers in Immunology N., 9, 2676.
Li, X.‐K., Lu, Q.‐B., Chen, W.‐W., Xu, W., Liu, R., Zhang, S.‐F., du, J., Li, H., Yao, K., Zhai, D., Zhang, P. H., Xing, B., Cui, N., Yang, Z. D., Yuan, C., Zhang, X. A., Xu, Z., Cao, W. C., Hu, Z., & Liu, W. (2018). Arginine deficiency is involved in thrombocytopenia and immunosuppression in severe fever with thrombocytopenia syndrome. Science Translational Medicine, 10, eaat4162.
Liew, P. X., & Kubes, P. (2019). The Neutrophil's role during health and disease. Physiological Reviews, 99, 1223–1248.
Litzman, J., Chovancová, Z., Bejdák, P., Litzman, M., Hel, Z., & Vlková, M. (2019). Common variable immunodeficiency patients display elevated plasma levels of granulocyte activation markers elastase and myeloperoxidase. International Journal of Immunopathology and Pharmacology, 33, 2058738419843381.
Marini, O., Costa, S., Bevilacqua, D., Calzetti, F., Tamassia, N., Spina, C., de Sabata, D., Tinazzi, E., Lunardi, C., Scupoli, M. T., Cavallini, C., Zoratti, E., Tinazzi, I., Marchetta, A., Vassanelli, A., Cantini, M., Gandini, G., Ruzzenente, A., Guglielmi, A., … Scapini, P. (2017). Mature CD10+ and immature CD10− neutrophils present in G‐CSF–treated donors display opposite effects on T cells. Blood, 129, 1343–1356.
Marini, O., Spina, C., Mimiola, E., Cassaro, A., Malerba, G., Todeschini, G., Perbellini, O., Scupoli, M., Carli, G., Facchinelli, D., Cassatella, M., Scapini, P., & Tecchio, C. (2016). Identification of granulocytic myeloid‐derived suppressor cells (G‐MDSCs) in the peripheral blood of Hodgkin and non‐Hodgkin lymphoma patients. Oncotarget, 7, 27676–27688.
Martens, A., Eppink, G. J., Woittiez, A. J., Eidhof, H., & de Leij, L. F. (1999). Neutrophil function capacity to express CD10 is decreased in patients with septic shock. Critical Care Medicine, 27, 549–553.
Matthews, N. C., Burton, C. S., & Alfred, A. (2021). Low‐density neutrophils in chronic graft versus host disease (cGVHD) are primarily immature CD10‐ and enhance T cell activation. Clinical and Experimental Immunology, 205, 257–273.
Mulay, S. R., & Anders, H.‐J. (2020). Neutrophils and neutrophil extracellular traps regulate immune responses in health and disease. Cells, 9, 2130.
Nagelkerke, S. Q., & Kuijpers, T. W. (2015). Immunomodulation by IVIg and the role of fc‐gamma receptors: Classic mechanisms of action after all? Frontiers in Immunology, 5, 674.
Nguyen, G. T., Green, E. R., & Mecsas, J. (2017). Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Frontiers in Cellular and Infection Microbiology, 7, 373.
Rocha, B. C., Marques, P. E., Leoratti, F. M. d. S., Junqueira, C., Pereira, D. B., Antonelli, L. R. d. V., et al. (2015). Type I interferon transcriptional signature in neutrophils and high frequency of low‐density granulocytes are associated with tissue damage in malaria. Cell Reports, 13, 2829–2841.
Rodriguez‐Rosales, Y. A., Langereis, J. D., Gorris, M. A. J., van den Reek, J. M. P. A., Fasse, E., Netea, M. G., et al. (2021). Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients. Journal of Allergy and Clinical Immunology, 148, 1030–1040.
Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 108, 377–396.
Scapini, P., Marini, O., Tecchio, C., & Cassatella, M. A. (2016). Human neutrophils in the saga of cellular heterogeneity: Insights and open questions. Immunological Reviews, 273, 48–60.
Sharifi, L., Tavakolinia, N., Kiaee, F., Rezaei, N., Mohsenzadegan, M., Azizi, G., et al. (2017). A review on defects of dendritic cells in common variable immunodeficiency. Endocrine, Metabolic & Immune Disorders – Drug Targets (Formerly Current Drug Targets – Immune, Endocrine & Metabolic Disorders), 17, 100–113.
Shipp, M., Stefano, G., Switzer, S., Griffin, J., & Reinherz, E. (1991). CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide‐ induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood, 78, 1834–1841.
Siedlar, M., Strach, M., Bukowska‐Strakova, K., Lenart, M., Szaflarska, A., Węglarczyk, K., Rutkowska, M., Baj‐Krzyworzeka, M., Pituch‐Noworolska, A., Kowalczyk, D., Grodzicki, T., Ziegler‐Heitbrock, L., & Zembala, M. (2011). Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14 +CD16 ++ monocytes in common variable immunodeficiency (CVID) patients. Clinical Immunology, 139, 122–132.
Sun, R., Huang, J., Yang, Y., Liu, L., Shao, Y., Li, L., & Sun, B. (2022). Dysfunction of low‐density neutrophils in peripheral circulation in patients with sepsis. Scientific Reports, 12, 685.
Tay, S. H., Celhar, T., & Fairhurst, A.‐M. (2020). Low‐density neutrophils in systemic lupus erythematosus. Arthritis & Rheumatology, 72, 1587–1595.
Trépanier, P., Chabot, D., & Bazin, R. (2014). Intravenous immunoglobulin modulates the expansion and cytotoxicity of CD8+ T cells. Immunology, 141, 233–241.
Tsinti, G., Makris, D., Germenis, A. E., & Speletas, M. (2020). Persistent activation of innate immunity in patients with primary antibody deficiencies. Journal of Immunology Research, 2020, 8317671.
Ui Mhaonaigh, A., Coughlan, A. M., Dwivedi, A., Hartnett, J., Cabral, J., Moran, B., Brennan, K., Doyle, S. L., Hughes, K., Lucey, R., Floudas, A., Fearon, U., McGrath, S., Cormican, S., de Bhailis, A., Molloy, E. J., Brady, G., & Little, M. A. (2019). Low density granulocytes in ANCA Vasculitis are Heterogenous and hypo‐responsive to anti‐myeloperoxidase antibodies. Frontiers in Immunology, 10, 2603.
Uribe‐Querol, E., & Rosales, C. (2020). Phagocytosis: Our current understanding of a universal biological process. Frontiers in Immunology, 11, 1066.
van der Heijden, J., Nagelkerke, S., Zhao, X., Geissler, J., Rispens, T., van den Berg, T. K., et al. (2014). Haplotypes of FcγRIIa and FcγRIIIb polymorphic variants influence IgG‐mediated responses in neutrophils. Journal of Immunology, 192, 2715–2721.
Vlkova, M., Chovancova, Z., Nechvatalova, J., Connelly, A. N., Davis, M. D., Slanina, P., Travnickova, L., Litzman, M., Grymova, T., Soucek, P., Freiberger, T., Litzman, J., & Hel, Z. (2019). Neutrophil and granulocytic myeloid‐derived suppressor cell–mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. The Journal of Immunology, 202, 93–104.
Walker, B. A., Hagenlocker, B. E., Stubbs, E. B., Jr., Sandborg, R. R., Agranoff, B. W., & Ward, P. A. (1991). Signal transduction events and fc γ R engagement in human neutrophils stimulated with immune complexes. Journal of Immunology, 146, 735–741.
Wright, H. L., Makki, F. A., Moots, R. J., & Edwards, S. W. (2017). Low‐density granulocytes: Functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signaling. Journal of Leukocyte Biology, 101, 599–611.