Pro-inflammatory role of neutrophils populations in trauma patients: monitoring neutrophil populations

. 2025 ; 16 () : 1565606. [epub] 20250708

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40698073

BACKGROUND: Trauma is a leading global cause of mortality, and systemic inflammatory response syndrome (SIRS) remains a significant complication, contributing to adverse outcomes. Neutrophils, as first responders to tissue injury, undergo substantial phenotypic and functional changes following trauma. This study investigates neutrophil subpopulations defined by CD16 and CD62L expression in trauma patients, focusing on their correlation with clinical biomarkers, trauma severity, and functional properties. METHODS: We included 50 non-infectious trauma patients, categorized into SIRS and Non-SIRS groups, and 43 elective surgery patients as controls. Neutrophil subsets were analyzed at two time points (TP1 and TP2) using flow cytometry. Functional assays evaluated phagocytosis, oxidative burst, mitochondrial function, and degranulation. Correlations between neutrophil subpopulations and clinical markers, including lactate, creatine kinase, Injury Severity Score, and Trauma and Injury Severity Score, were examined. RESULTS: Patients with SIRS exhibited higher proportions of banded neutrophils and CD16lowCD62Llow neutrophils at TP1, alongside reduced levels of mature neutrophils. Elevated lactate and creatine kinase levels positively correlated with banded neutrophils and CD16lowCD62Llow neutrophils, while negatively correlating with mature neutrophils CD16highCD62Lhigh and hypersegmented neutrophils CD16highCD62Llow. Hypersegmented neutrophils were more prevalent in Non-SIRS patients at TP1 and in SIRS patients at TP2. Banded neutrophils showed a positive correlation with Injury Severity Score and an inverse correlation with Trauma and Injury Severity Score (TRISS), whereas hypersegmented neutrophils were negatively associated with ISS and positively correlated with TRISS. These correlations likely reflect the pro-inflammatory role of banded neutrophils and the inflammation-resolving function of hypersegmented neutrophils. CD16lowCD62Llow neutrophils displayed impaired phagocytosis, oxidative burst, and degranulation capacity, indicating functional deficiencies. CONCLUSION: This study highlights the dynamic changes in neutrophil subpopulations in trauma and their association with systemic inflammation and clinical severity. Increased banded neutrophils correlate with SIRS and metabolic stress, whereas hypersegmented neutrophils may contribute to resolving inflammation. CD16lowCD62Llow neutrophils exhibit functional impairments, warranting further investigation. Monitoring neutrophil subpopulations could aid in identifying trauma patients at risk for non-infectious SIRS and guide therapeutic interventions.

Zobrazit více v PubMed

van Breugel JMM, Niemeyer MJS, Houwert RM, Groenwold RHH, Leenen LPH, van Wessem KJP. Global changes in mortality rates in polytrauma patients admitted to the ICU—a systematic review. World J Emerg Surg. (2020) 15:55. doi:  10.1186/s13017-020-00330-3 PubMed DOI PMC

Weihs V, Frenzel S, Dedeyan M, Hruska F, Staats K, Hajdu S, et al. 25-Year experience with adult polytraumatized patients in a European level 1 trauma center: polytrauma between 1995 and 2019. What has changed? A retrospective cohort study. Arch Orthop Trauma Surg. (2023) 143:2409–15. doi:  10.1007/s00402-022-04433-1 PubMed DOI PMC

Mortaz E, Zadian SS, Shahir M, Folkerts G, Garssen J, Mumby S, et al. Does neutrophil phenotype predict the survival of trauma patients? Front Immunol. (2019) 10:2122. doi:  10.3389/fimmu.2019.02122 PubMed DOI PMC

Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, et al. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg. (2024) 50:1313–30. doi:  10.1007/s00068-023-02388-5 PubMed DOI PMC

Burk A-M, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. (2012) 37:348. doi:  10.1097/SHK.0b013e3182471795 PubMed DOI PMC

Lord JM, Midwinter MJ, Chen Y-F, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. (2014) 384:1455–65. doi:  10.1016/S0140-6736(14)60687-5 PubMed DOI PMC

Janicova A, Relja B. Neutrophil phenotypes and functions in trauma and trauma-related sepsis. Shock. (2021) 56:16. doi:  10.1097/SHK.0000000000001695 PubMed DOI

Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers J-W, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. (2012) 122:327–36. doi:  10.1172/JCI57990 PubMed DOI PMC

Hellebrekers P, Hesselink L, Huisman A, ten Berg M, Koenderman L, Leenen LPH, et al. Recognizing the mobilization of neutrophils with banded nuclei early after trauma. Int J Lab Hematol. (2020) 42:e224–7. doi:  10.1111/ijlh.13272 PubMed DOI PMC

Cortjens B, Ingelse SA, Calis JC, Vlaar AP, Koenderman L, Bem RA, et al. Neutrophil subset responses in infants with severe viral respiratory infection. Clin Immunol. (2017) 176:100–6. doi:  10.1016/j.clim.2016.12.012 PubMed DOI

Gordon S. Phagocytosis: an immunobiologic process. Immunity. (2016) 44:463–75. doi:  10.1016/j.immuni.2016.02.026 PubMed DOI

Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. (2005) 77:598–625. doi:  10.1189/jlb.1204697 PubMed DOI

Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol-Cell Physiol. (2020) 319:C510–32. doi:  10.1152/ajpcell.00181.2020 PubMed DOI PMC

Monteiro L de B, Davanzo GG, de Aguiar CF, Moraes-Vieira PMM. Using flow cytometry for mitochondrial assays. MethodsX. (2020) 7:100938. doi:  10.1016/j.mex.2020.100938 PubMed DOI PMC

Botha AJ, Moore FA, Moore EE, Sauaia A, Banerjee A, Peterson VM. Early neutrophil sequestration after injury: A pathogenic mechanism for multiple organ failure. J Trauma Acute Care Surg. (1995) 39:411. doi:  10.1097/00005373-199509000-00003 PubMed DOI

McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, et al. Neutrophils: need for standardized nomenclature. Front Immunol. (2021) 12:602963. doi:  10.3389/fimmu.2021.602963 PubMed DOI PMC

Guyette F, Suffoletto B, Castillo J-L, Quintero J, Callaway C, Puyana J-C. Prehospital serum lactate as a predictor of outcomes in trauma patients: A retrospective observational study. J Trauma Acute Care Surg. (2011) 70:782. doi:  10.1097/TA.0b013e318210f5c9 PubMed DOI

Chana M, Manson J, Davenport R, De’Ath H, Spoors C, Raza I, et al. Time course of lactate clearance in trauma and its relevance to outcomes. Scand J Trauma Resusc Emerg Med. (2012) 20:O9. doi:  10.1186/1757-7241-20-S1-O9 DOI

Harrois A, Soyer B, Gauss T, Hamada S, Raux M, Duranteau J, et al. Prevalence and risk factors for acute kidney injury among trauma patients: a multicenter cohort study. Crit Care. (2018) 22:344. doi:  10.1186/s13054-018-2265-9 PubMed DOI PMC

Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun. (2020) 11:3547. doi:  10.1038/s41467-020-17402-2 PubMed DOI PMC

Stillie R, Farooq SM, Gordon JR, Stadnyk AW. The functional significance behind expressing two IL–8 receptor types on PMN. J Leukoc Biol. (2009) 86:529–43. doi:  10.1189/jlb.0208125 PubMed DOI

Hart SP, Ross JA, Ross K, Haslett C, Dransfield I. Molecular characterization of the surface of apoptotic neutrophils: Implications for functional downregulation and recognition by phagocytes. Cell Death Differ. (2000) 7:493–503. doi:  10.1038/sj.cdd.4400680 PubMed DOI

Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: State of the art methods and biosensors. Semin Cell Dev Biol. (2024) 156:58–65. doi:  10.1016/j.semcdb.2023.07.003 PubMed DOI

Rahman I, Collado Sánchez A, Davies J, Rzeniewicz K, Abukscem S, Joachim J, et al. L-selectin regulates human neutrophil transendothelial migration. J Cell Sci. (2021) 134:jcs250340. doi:  10.1242/jcs.250340 PubMed DOI PMC

Zarbock A, Ley K. Neutrophil adhesion and activation under flow. Microcirculation. (2009) 16:31–42. doi:  10.1080/10739680802350104 PubMed DOI PMC

Wedepohl S, Beceren-Braun F, Riese S, Buscher K, Enders S, Bernhard G, et al. l-Selectin – A dynamic regulator of leukocyte migration. Eur J Cell Biol. (2012) 91:257–64. doi:  10.1016/j.ejcb.2011.02.007 PubMed DOI

Slanina P, Stichova J, Bosakova V, Zambo IS, Kohoutkova MH, Laznickova P, et al. Phenotype and oxidative burst of low-density neutrophil subpopulations are altered in common variable immunodeficiency patients. Cytometry B Clin Cytom. (2024) 106:99–112. doi:  10.1002/cyto.b.22150 PubMed DOI

Bongers SH, Chen N, van Grinsven E, van Staveren S, Hassani M, Spijkerman R, et al. Kinetics of neutrophil subsets in acute, subacute, and chronic inflammation. Front Immunol. (2021) 12:674079. doi:  10.3389/fimmu.2021.674079 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...