Synthesis and photothermal conversion properties of sandwich N-fused porphyrin rhodium-μ-dichloride dimer complexes: π-extended analog of pentamethylcyclopentadienyl dirhodium(III)-μ-dichloride dimer
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38016327
DOI
10.1016/j.jinorgbio.2023.112435
PII: S0162-0134(23)00317-3
Knihovny.cz E-resources
- Keywords
- N-fused porphyrin, NIR absorption, Photothermal conversion, Rhodium, Sandwich metal complex,
- MeSH
- Chlorides MeSH
- Catalysis MeSH
- Ligands MeSH
- Porphyrins * chemistry MeSH
- Rhodium * chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorides MeSH
- Ligands MeSH
- Porphyrins * MeSH
- Rhodium * MeSH
Anionic cyclopentadienyl (Cp) and its pentamethyl-substituted derivative (Cp*) serve as crucial ligands for creating stable π-coordinated materials, including catalysts. From a structural perspective, the π-extended analog of Cp, known as an N-fused porphyrin (NFP), is recognized as an intriguing 18π aromatic chromophore, offering near-infrared (NIR) optical properties that can be fine-tuned through metal complexation. When coordinated with rhodium at the central NFP core, it forms a sandwich binuclear rhodium(III) complex along with terminal and bridging chloride ligands, denoted as Rh-1, and its bromo derivative, Rh-1-Br. In contrast to the bis-NFP complex of iron(II) reported previously by our team, both Rh-1 and Rh-1-Br complexes exhibit strong NIR optical properties and narrow HOMO-LUMO energy gaps, attributed to minimal orbital interactions between the two co-facial NFP ligands. Leveraging these NIR absorption properties, we assessed the photothermal conversion properties of Rh-1 and ligand 1, revealing high conversion efficiency. This suggests their potential application as photothermal agents for use in photothermal therapy.
Advanced Research Support Center Ehime University Matsuyama 790 8577 Japan
Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove 50005 Czech Republic
References provided by Crossref.org