Lower ventricular and atrial strain in patients who recovered from COVID-19 assessed by cardiovascular magnetic resonance feature tracking

. 2023 ; 10 () : 1293105. [epub] 20231113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38028469

INTRODUCTION: One of the most common complications of coronavirus disease 2019 (COVID-19) is myocardial injury, and although its cause is unclear, it can alter the heart's contractility. This study aimed to characterize the ventricular and atrial strain in patients who recovered from COVID-19 using cardiovascular magnetic resonance feature-tracking (CMR-FT). METHODS: In this single-center study, we assessed left ventricle (LV) and right ventricular (RV) global circumferential strain (GCS), global longitudinal strain (GLS), global radial strain (GRS), left atrial (LA) and right atrial (RA) longitudinal strain (LS) parameters by CMR-FT. The student's t-test and Wilcoxon rank-sum test were used to compare the variables. RESULTS: We compared seventy-two patients who recovered from COVID-19 (49 ± 16 years) to fifty-four controls (49 ± 12 years, p = 0.752). The patients received a CMR examination 48 (34 to 165) days after the COVID-19 diagnosis. 28% had LGE. Both groups had normal LV systolic function. Strain parameters were significantly lower in the COVID-19 survivors than in controls. DISCUSSION: Patients who recovered from COVID-19 exhibited significantly lower strain in the left ventricle (through LVGCS, LVGLS, LVGRS), right ventricle (through RVGLS and RVGRS), left atrium (through LALS), and right atrium (through RALS) than controls.

Zobrazit více v PubMed

Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. (2021) 31:100683. 10.1016/j.eclinm.2020.100683 PubMed DOI PMC

Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: possible mechanisms. Life Sci. (2020) 253:117723. 10.1016/j.lfs.2020.117723 PubMed DOI PMC

Chang WT, Toh HS, Liao CT, Yu WL. Cardiac involvement of COVID-19: a comprehensive review. Am J Med Sci. (2021) 361(1):14–22. 10.1016/j.amjms.2020.10.002 PubMed DOI PMC

Yonas E, Alwi I, Pranata R, Huang I, Lim MA, Gutierrez EJ, et al. Effect of heart failure on the outcome of COVID-19 — a meta analysis and systematic review. Am J Emerg Med. (2021) 46:204–11. 10.1016/j.ajem.2020.07.009 PubMed DOI PMC

Yang X, Yu Y, Xu J, Shu H, Ja X, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. (2020) 8(5):475–81. 10.1016/S2213-2600(20)30079-5 PubMed DOI PMC

Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. (2020) 41(22):2070–9. 10.1093/eurheartj/ehaa408 PubMed DOI PMC

Wang Y, Zheng J, Islam MS, Yang Y, Hu Y, Chen X. The role of CD4(+)FoxP3(+) regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment. Int J Biol Sci. (2021) 17(6):1507–20. 10.7150/ijbs.59534 PubMed DOI PMC

Hendren NS, Drazner MH, Bozkurt B, Cooper LT. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. (2020) 141(23):1903–14. 10.1161/CIRCULATIONAHA.120.047349 PubMed DOI PMC

Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. (2020) 22(5):911–5. 10.1002/ejhf.1828 PubMed DOI PMC

Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL. Special article—acute myocardial injury in patients hospitalized with COVID-19 infection: a review. Prog Cardiovasc Dis. (2020) 63(5):682–9. 10.1016/j.pcad.2020.05.013 PubMed DOI PMC

Kotecha T, Knight DS, Razvi Y, Kumar K, Vimalesvaran K, Thornton G, et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. (2021) 42(19):1866–78. 10.1093/eurheartj/ehab075 PubMed DOI PMC

Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update. J Cardiovasc Magn Reson. (2020) 22(1):19. 10.1186/s12968-020-00610-6 PubMed DOI PMC

Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging. (2016) 9(4):e004077. 10.1161/CIRCIMAGING.115.004077 PubMed DOI

Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. (2016) 18(1):51. 10.1186/s12968-016-0269-7 PubMed DOI PMC

Kermer J, Traber J, Utz W, Hennig P, Menza M, Jung B, et al. Assessment of diastolic dysfunction: comparison of different cardiovascular magnetic resonance techniques. ESC Heart Failure. (2020) 7(5):2637–49. 10.1002/ehf2.12846 PubMed DOI PMC

The National Institute of Health Coronavirus Disease 2019 (COVID-19) treatment guidelines. Available at: www.covid19treatmentguidelines.nih.gov PubMed

Panovský R, Pešl M, Máchal J, Holeček T, Feitová V, Juříková L, et al. Quantitative assessment of left ventricular longitudinal function and myocardial deformation in Duchenne muscular dystrophy patients. Orphanet J Rare Dis. (2021) 16(1):57. 10.1186/s13023-021-01704-9 PubMed DOI PMC

Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. (2016) 15(2):155–63. 10.1016/j.jcm.2016.02.012 PubMed DOI PMC

Myhre PL, Heck SL, Skranes JB, Prebensen C, Jonassen CM, Berge T, et al. Cardiac pathology 6 months after hospitalization for COVID-19 and association with the acute disease severity. Am Heart J. (2021) 242:61–70. 10.1016/j.ahj.2021.08.001 PubMed DOI PMC

Tanacli R, Doeblin P, Götze C, Zieschang V, Faragli A, Stehning C, et al. COVID-19 vs. classical myocarditis associated myocardial injury evaluated by cardiac magnetic resonance and endomyocardial biopsy. Front Cardiovasc Med. (2021) 8:737257. 10.3389/fcvm.2021.737257 PubMed DOI PMC

Li X, Wang H, Zhao R, Wang T, Zhu Y, Qian Y, et al. Elevated extracellular volume fraction and reduced global longitudinal strains in participants recovered from COVID-19 without clinical cardiac findings. Radiology. (2021) 299(2):E230–e40. 10.1148/radiol.2021203998 PubMed DOI PMC

Wang H, Li R, Zhou Z, Jiang H, Yan Z, Tao X, et al. Cardiac involvement in COVID-19 patients: mid-term follow up by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. (2021) 23(1):14. 10.1186/s12968-021-00710-x PubMed DOI PMC

Zhang L, Wei X, Wang H, Jiang R, Tan Z, Ouyang J, et al. Cardiac involvement in patients recovering from delta variant of COVID-19: a prospective multi-parametric MRI study. ESC Heart Failure. (2022) 9(4):2576–84. 10.1002/ehf2.13971 PubMed DOI PMC

Urmeneta Ulloa J, Martínez de Vega V, Salvador Montañés O, Álvarez Vázquez A, Sánchez-Enrique C, Hernández Jiménez S, et al. Cardiac magnetic resonance in recovering COVID-19 patients. Feature tracking and mapping analysis to detect persistent myocardial involvement. Int J Cardiol Heart Vasc. (2021) 36:100854. 10.1016/j.ijcha.2021.100854 PubMed DOI PMC

Turan T, Özderya A, Şahin S, Konuş AH, Kul S, Akyüz AR, et al. Left ventricular global longitudinal strain in low cardiac risk outpatients who recently recovered from coronavirus disease 2019. Int J Cardiovasc Imaging. (2021) 37(10):2979–89. 10.1007/s10554-021-02376-z PubMed DOI PMC

Chen B-H, Shi N-N, Wu C-W, An D-A, Shi Y-X, Wesemann LD, et al. Early cardiac involvement in patients with acute COVID-19 infection identified by multiparametric cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. (2021) 22(8):844–51. 10.1093/ehjci/jeab042 PubMed DOI PMC

Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Post-COVID syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study. BMJ (Clin Res). (2021) 372:n693. 10.1136/bmj.n693 PubMed DOI PMC

Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. (2022) 28(3):583–90. 10.1038/s41591-022-01689-3 PubMed DOI PMC

Puntmann VO, Martin S, Shchendrygina A, Hoffmann J, Ka MM, Giokoglu E, et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat Med. (2022) 28(10):2117–23. 10.1038/s41591-022-02000-0 PubMed DOI PMC

Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. (2021) 594(7862):259–64. 10.1038/s41586-021-03553-9 PubMed DOI

Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiology. (2020) 5(11):1265–73. 10.1001/jamacardio.2020.3557 PubMed DOI PMC

Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging. (2020) 13(11):2330–9. 10.1016/j.jcmg.2020.05.004 PubMed DOI PMC

Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. (2016) 37(15):1196–207. 10.1093/eurheartj/ehv529 PubMed DOI PMC

Kowallick JT, Lotz J, Hasenfuß G, Schuster A. Left atrial physiology and pathophysiology: role of deformation imaging. World J Cardiol. (2015) 7(6):299–305. 10.4330/wjc.v7.i6.299 PubMed DOI PMC

Truong VT, Palmer C, Young M, Wolking S, Ngo TNM, Sheets B, et al. Right atrial deformation using cardiovascular magnetic resonance myocardial feature tracking compared with two-dimensional speckle tracking echocardiography in healthy volunteers. Sci Rep. (2020) 10(1):5237. 10.1038/s41598-020-62105-9 PubMed DOI PMC

Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. (2018) 19(6):591–600. 10.1093/ehjci/jey042 PubMed DOI

Lassen MCH, Skaarup KG, Lind JN, Alhakak AS, Sengeløv M, Nielsen AB, et al. Recovery of cardiac function following COVID-19—eCHOVID-19: a prospective longitudinal cohort study. Eur J Heart Fail. (2021) 23(11):1903–12. 10.1002/ejhf.2347 PubMed DOI PMC

Ingul CB, Grimsmo J, Mecinaj A, Trebinjac D, Berger Nossen M, Andrup S, et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J Am Heart Assoc. (2022) 11(3):e023473-e. 10.1161/JAHA.121.023473 PubMed DOI PMC

Akbulut M, Tan S, Gerede Uludağ DM, Kozluca V, Dinçer İ. Evaluation of cardiac function in uncomplicated COVID-19 survivors by 2-dimensional speckle tracking imaging. Anatol J Cardiol. (2022) 26(11):841–8. 10.5152/AnatolJCardiol.2022.1360 PubMed DOI PMC

Øvrebotten T, Myhre P, Grimsmo J, Mecinaj A, Trebinjac D, Nossen MB, et al. Changes in cardiac structure and function from 3 to 12 months after hospitalization for COVID-19. Clin Cardiol. (2022) 45(10):1044–52. 10.1002/clc.23891 PubMed DOI PMC

Gao Y-P, Zhou W, Huang P-N, Liu H-Y, Bi X-J, Zhu Y, et al. Normalized cardiac structure and function in COVID-19 survivors late after recovery. Front Cardiovasc Med. (2021) 8:756790. 10.3389/fcvm.2021.756790 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...