Performance of a modified and intermittently operated slow sand filter with two different mediums in removing turbidity, ammonia, and phosphate with varying acclimatization periods
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
38046171
PubMed Central
PMC10686868
DOI
10.1016/j.heliyon.2023.e22577
PII: S2405-8440(23)09785-2
Knihovny.cz E-resources
- Keywords
- Filtration, Wastewater, Water treatment, biofilm, schmutzdecke,
- Publication type
- Journal Article MeSH
The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p < 0.05) as compared to CC medium (45.99 ± 26.84 % vs. 3.79 ± 9.35 %), while CC exhibited slightly higher (p > 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.
See more in PubMed
Kustanto A. Water quality in Indonesia: the role of socioeconomic indicators. J. Ekon. Pembang. 2020;18:47–62. doi: 10.29259/jep.v18i1.11509. DOI
Bilotta G.S., Brazier R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008;42:2849–2861. doi: 10.1016/j.watres.2008.03.018. PubMed DOI
Wibowo Y.G., Imron M.F., Kurniawan S.B., Ramadan B.S., Taher T., Sudibya A.H., Syarifuddin H., Khairurrijal K., Jarwinda J. Emerging strategies for mitigating acid mine drainage formation and environmental impacts: a comprehensive review of recent advances. Sci. Technol. Indones. 2023;8:516–541. doi: 10.26554/sti.2023.8.4.516-541. DOI
Al-Riyami I.M., Ahmed M., Al-Busaidi A., Choudri B.S. Antibiotics in wastewaters: a review with focus on Oman. Appl. Water Sci. 2018;8 doi: 10.1007/s13201-018-0846-z. DOI
Ramli N.N., Kurniawan S.B., Ighalo J.O., Mohd Said N.S., Marsidi N., Buhari J., Ramli Shah R.A., Zulkifli M., Alias J., Daud N.M., Ahmad J., Othman A.R., Sheikh Abdullah S.R., Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals. 2023 doi: 10.1007/s10534-023-00512-x. PubMed DOI
Randall D.G., Naidoo V. Urine: the liquid gold of wastewater. J. Environ. Chem. Eng. 2018;6:2627–2635. doi: 10.1016/j.jece.2018.04.012. DOI
Herschy R.W., Herschy R.W., Wolanski E., Andutta F., Delhez E., Fairbridge R.W., Bengtsson L., Farley M., Sklar F.H., Fontaine T.D. 2012. Eutrophication in Fresh Waters: an International Review; pp. 258–270. DOI
Yang X., Wu X., Hao H., He Z. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. - Sci. B. 2008;9:197–209. doi: 10.1631/jzus.B0710626. PubMed DOI PMC
Nasir N.M., Jusoh A., Manan H., Kasan N.A., Kamaruzzan A.S., Karim Ghani W.A., Kurniawan S.B., Lananan F. Utilization of microalgae, Chlorella sp. UMT LF2 for bioremediation of Litopenaeus vannamei culture system and harvesting using bio-flocculant, Aspergillus Niger. Biocatal. Agric. Biotechnol. 2023;47 doi: 10.1016/j.bcab.2022.102596. DOI
Abu Hasan H., Muhamad M.H., Budi Kurniawan S., Buhari J., Husain Abuzeyad O. Managing bisphenol A contamination: advances in removal technologies and future prospects. Water. 2023;15:3573. doi: 10.3390/w15203573. DOI
Siwila S., Brink I.C. A small-scale low-cost water treatment system for removal of selected heavy metals, bacteria and particles. Water Pract. Technol. 2018;13:446–459. doi: 10.2166/wpt.2018.055. DOI
Sabogal-Paz L.P., Campos L.C., Bogush A., Canales M. Household slow sand filters in intermittent and continuous flows to treat water containing low mineral ion concentrations and Bisphenol A. Sci. Total Environ. 2020;702 doi: 10.1016/j.scitotenv.2019.135078. PubMed DOI
Fitriani N., Radin Mohamed R., Affandi M., Nurdin R., Kurniawan S.B., Ni’matuzahroh N. Performance of intermittent slow sand filter processing units in treating food court wastewater. J. Ecol. Eng. 2023;24:117–139. doi: 10.12911/22998993/159399. DOI
Nakamoto N. Progress in slow sand and alternative biofiltration processes. Water Intell. Online. 2014;13 doi: 10.2166/9781780406381. DOI
Fitriani N., Wahyudianto F.E., Salsabila N.F., Mohamed R.M.S.R., Kurniawan S.B. Performance of modified slow sand filter to reduce turbidity, total suspended solids, and iron in river water as water treatment in disaster areas. J. Ecol. Eng. 2023;24:1–18. doi: 10.12911/22998993/156009. DOI
Pardede A., Arief Budihardjo M., Purwono The removal of turbidity and TSS of the domestic wastewater by coagulation-flocculation process involving oyster mushroom as biocoagulant. E3S Web Conf. 2018;31 doi: 10.1051/e3sconf/20183105007. DOI
Suzuki T., Yamate T., Otsuka M., Ichimura S. Removal of standard plate count bacteria from surface water with low turbidity via integrated M. oleifera seed coagulation pretreatment and two-layer cloth filtration process. J. Water Process Eng. 2020;38 doi: 10.1016/j.jwpe.2020.101648. DOI
Yildiz B.S. Metrop. Sustain. Elsevier; 2012. Water and wastewater treatment: biological processes; pp. 406–428. DOI
Ni’matuzahroh N. Fitriani, Ardiyanti P.E., Kuncoro E.P., Budiyanto W.D., Isnadina D.R.M., Wahyudianto F.E., Radin Mohamed R.M.S. Behavior of schmutzdecke with varied filtration rates of slow sand filter to remove total coliforms. Heliyon. 2020;6 doi: 10.1016/j.heliyon.2020.e03736. PubMed DOI PMC
Mancera-López M.E., Esparza-García F., Chávez-Gómez B., Rodríguez-Vázquez R., Saucedo-Castañeda G., Barrera-Cortés J. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int. Biodeterior. Biodegrad. 2008;61:151–160. doi: 10.1016/j.ibiod.2007.05.012. DOI
de Souza F.H., Roecker P.B., Silveira D.D., Sens M.L., Campos L.C. Influence of slow sand filter cleaning process type on filter media biomass: backwashing versus scraping. Water Res. 2021;189 doi: 10.1016/J.WATRES.2020.116581. PubMed DOI
Buhari J., Hasan H.A., Kurniawan S.B., Abdullah S.R.S., Othman A.R. Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater. J. Water Process Eng. 2023;54 doi: 10.1016/j.jwpe.2023.103969. DOI
Gimbel R., Graham N., Collins M.R. Recent progress in slow sand and alternative biofiltration processes. Water Intell. Online. 2015;5 doi: 10.2166/9781780402451. 9781780402451–9781780402451. DOI
Zhao Y., Wang X.X., Liu C., Wang S., Wang X.X., Hou H., Wang J., Li H. Purification of harvested rainwater using slow sand filters with low-cost materials: bacterial community structure and purifying effect. Sci. Total Environ. 2019;674:344–354. doi: 10.1016/j.scitotenv.2019.03.474. PubMed DOI
Johnson D.B., Schideman L.C., Canam T., Hudson R.J.M. Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors. Algal Res. 2018 doi: 10.1016/j.algal.2018.07.009. DOI
Abdiyev K., Azat S., Kuldeyev E., Ybyraiymkul D., Kabdrakhmanova S., Berndtsson R., Khalkhabai B., Kabdrakhmanova A., Sultakhan S. Review of slow sand filtration for raw water treatment with potential application in less-developed countries. Water. 2023;15:2007. doi: 10.3390/w15112007. DOI
Kaetzl K., Lübken M., Nettmann E., Krimmler S., Wichern M. Slow sand filtration of raw wastewater using biochar as an alternative filtration media. Sci. Rep. 2020;10:1229. doi: 10.1038/s41598-020-57981-0. PubMed DOI PMC
Fitriani N., Kurniawan S.B., Imron M.F., Maulana I.I., Soedjono E.S., Mohamed R.M.S.R., Othman N.B., Ni’matuzahroh, Kusuma M.N. System dynamic modelling to assess the influential factors affecting roughing filter and slow sand filter performance in treating culinary wastewater. J. Water Process Eng. 2023;56 doi: 10.1016/j.jwpe.2023.104274. DOI
Kurniawan S.B., Abdullah S.R.S., Imron M.F., Ahmad A., Mohd Said N.S., Mohd Rahim N.F., Mohammad Alnawajha M., Abu Hasan H., Othman A.R., Purwanti I.F. Potential of valuable materials recovery from aquaculture wastewater: an introduction to resource reclamation. Aquac. Res. 2021;52:2954–2962. doi: 10.1111/are.15180. DOI
Daee M., Gholipour A., Stefanakis A.I.I. Performance of pilot Horizontal Roughing Filter as polishing stage of waste stabilization ponds in developing regions and modelling verification. Ecol. Eng. 2019;138:8–18. doi: 10.1016/j.ecoleng.2019.07.007. DOI
Budin K., Subramaniam Y., Tair R., Ali S.A. Mohd. The ability of crab and cockle shell to adsorb lead and chromium from industrial effluent. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014;8:4–6. doi: 10.9790/2402-081210406. DOI
Moideen S.N.F., Md Din M.F., Ponraj M., Mohd Yusof M.B., Ismail Z., Songip A.R., Chelliapan S. Wasted cockle shell (Anadara granosa) as a natural adsorbent for treating polluted river water in the fabricated column model (FCM) Desalin. Water Treat. 2016;57:16395–16403. doi: 10.1080/19443994.2015.1082939. DOI
Kurniawan S.B., Imron M.F. The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environ. Technol. Innov. 2019;15 doi: 10.1016/j.eti.2019.100420. DOI
Kurniawan S.B., Imron M.F. Seasonal variation of plastic debris accumulation in the estuary of Wonorejo River, Surabaya, Indonesia. Environ. Technol. Innov. 2019;16 doi: 10.1016/j.eti.2019.100490. DOI
Almaamary E.A.S., Abdullah S.R.S., Ismail N.‘I., Idris M., Kurniawan S.B., Imron M.F. Comparative performance of Scirpus grossus for phytotreating mixed dye wastewater in batch and continuous pilot subsurface constructed wetland systems. J. Environ. Manag. 2022;307 doi: 10.1016/j.jenvman.2022.114534. PubMed DOI
Kadir A.A., Abdullah S.R.S., Othman B.A., Hasan H.A., Othman A.R., Imron M.F., ‘Izzati Ismail N., Kurniawan S.B. Dual function of lemna minor and Azolla pinnata as phytoremediator for palm oil mill effluent and as feedstock. Chemosphere. 2020;259 doi: 10.1016/j.chemosphere.2020.127468. PubMed DOI
Purwanti I.F., Kurniawan S.B., Ismail N. ‘I., Imron M.F., Abdullah S.R.S. Aluminium removal and recovery from wastewater and soil using isolated indigenous bacteria. J. Environ. Manag. 2019;249 doi: 10.1016/j.jenvman.2019.109412. PubMed DOI
Zhao W., Peng Y., Wang M., Huang Y., Li X. Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater. Bioresour. Technol. 2019;294 doi: 10.1016/j.biortech.2019.122161. PubMed DOI
Shitu A., Liu G., Muhammad A.I., Zhang Y., Tadda M.A., Qi W., Liu D., Ye Z., Zhu S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: a review. Aquac. Fish. 2021 doi: 10.1016/j.aaf.2021.04.006. DOI
Zhou Y., Kiely P.D., Kibbee R., Ormeci B. Effect of polymeric support material on biofilm development, bacterial population, and wastewater treatment performance in anaerobic fixed-film systems. Chemosphere. 2021 doi: 10.1016/j.chemosphere.2020.128477. PubMed DOI
Rada-Ariza A.M., Fredy D., Lopez-Vazquez C.M., Van der Steen N.P., Lens P.N.L. Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Res. 2019;39 doi: 10.1016/j.algal.2019.101468. DOI
Wang J., Rong H., Cao Y., Zhang C. Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures. Bioprocess Biosyst. Eng. 2020 doi: 10.1007/s00449-020-02374-w. PubMed DOI
Christiansen N.H., Andersen F.O., Jensen H.S. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique. Aquat. Bot. 2016;128:58–67. doi: 10.1016/j.aquabot.2015.10.002. DOI
Dołżonek J., Cho C.W., Stepnowski P., Markiewicz M., Thöming J., Stolte S. Membrane partitioning of ionic liquid cations, anions and ion pairs – estimating the bioconcentration potential of organic ions. Environ. Pollut. 2017;228:378–389. doi: 10.1016/j.envpol.2017.04.079. PubMed DOI
Xiong J.B., Qin Y., Islam E. Adsorptive removal of phosphate from aqueous solutions by waste snail and clam shells. Environ. Eng. Manag. Journal. 2015;14(No 5) https://eemj.eu/index.php/EEMJ/article/view/2267
Wan Jusoh H.H., Juahir H., Mohd Nasir N., Kurniawan S.B., Jusoh A., Mahiddin N.A. Granular activated carbon optimization for enhanced environmental disaster resilience and malathion removal from agricultural effluent. E3S Web Conf. 2023;437 doi: 10.1051/e3sconf/202343703006. DOI
Maiyo J.K., Dasika S., Jafvert C.T. Slow sand filters for the 21st century: a review. Int. J. Environ. Res. Public Health. 2023;20:1019. doi: 10.3390/ijerph20021019. PubMed DOI PMC
Elbana M., Ramírez de Cartagena F., Puig-Bargués J. Effectiveness of sand media filters for removing turbidity and recovering dissolved oxygen from a reclaimed effluent used for micro-irrigation. Agric. Water Manag. 2012;111:27–33. doi: 10.1016/j.agwat.2012.04.010. DOI
Someya M., Higashino K., Imoto Y., Sakanakura H., Yasutaka T. Effects of membrane filter material and pore size on turbidity and hazardous element concentrations in soil batch leaching tests. Chemosphere. 2021;265 doi: 10.1016/j.chemosphere.2020.128981. PubMed DOI
Kiranda H.K., Mahmud R., Abubakar D., Zakaria Z.A. Fabrication, characterization and cytotoxicity of spherical-shaped conjugated gold-cockle shell derived calcium carbonate nanoparticles for biomedical applications. Nanoscale Res. Lett. 2018;13:1. doi: 10.1186/s11671-017-2411-3. PubMed DOI PMC
Isik Z., Saleh M., Dizge N. Adsorption studies of ammonia and phosphate ions onto calcium alginate beads. Surface. Interfac. 2021;26 doi: 10.1016/j.surfin.2021.101330. DOI
Yagi S., Fukushi K. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite. J. Colloid Interface Sci. 2012;384:128–136. doi: 10.1016/j.jcis.2012.06.063. PubMed DOI
Peterson E.S., Summers R.S. Removal of effluent organic matter with biofiltration for potable reuse: a review and meta-analysis. Water Res. 2021;199 doi: 10.1016/j.watres.2021.117180. PubMed DOI
Brochocka A., Nowak A., Kozikowski P. Influence of carbon sorbent quantity on breakthrough time in absorbent filters for antismog half mask application. Materials. 2022;15:584. doi: 10.3390/ma15020584. PubMed DOI PMC
Sorial G.A., Smith F.L., Suidan M.T., Brenner R.C. Removal of ammonia from contaminated air by trickle bed air biofilters. J. Air Waste Manage. Assoc. 2001;51:756–765. doi: 10.1080/10473289.2001.10464307. PubMed DOI
Tarayre C., Nguyen H.-T., Brognaux A., Delepierre A., De Clercq L., Charlier R., Michels E., Meers E., Delvigne F. Characterisation of phosphate accumulating organisms and techniques for polyphosphate detection: a review. Sensors. 2016;16:797. doi: 10.3390/s16060797. PubMed DOI PMC
Al-Ajalin F.A.H., Abdullah S.R.S., Idris M., Kurniawan S.B., Ramli N.N., Imron M.F. Removal of ammonium, phosphate, and COD by bacteria isolated from Lepironia articulata and Scirpus grossus root system. Int. J. Environ. Sci. Technol. 2022;19:11893–11904. doi: 10.1007/s13762-022-03926-1. DOI
Kumar P.S., Korving L., Keesman K.J., van Loosdrecht M.C.M., Witkamp G.J. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chem. Eng. J. 2019;358:160–169. doi: 10.1016/j.cej.2018.09.202. DOI
Hofman-Caris Roberta. 2019. Affinity Adsorption - Removal of Pharmaceuticals at the Source.www.kwrwater.nl
Stokholm-Bjerregaard M., McIlroy S.J., Nierychlo M., Karst S.M., Albertsen M., Nielsen P.H. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00718. PubMed DOI PMC
Jena J., Kumar R., Saifuddin M., Dixit A., Das T. Anoxic-aerobic SBR system for nitrate, phosphate and COD removal from high-strength wastewater and diversity study of microbial communities. Biochem. Eng. J. 2016;105:80–89. doi: 10.1016/j.bej.2015.09.007. DOI
Li L., Pagilla K.R. Biomass density-function relationships in suspended growth biological processes – a critical review. Water Res. 2017;111:274–287. doi: 10.1016/j.watres.2017.01.012. PubMed DOI
Mažeikienė A. Improving small-scale wastewater treatment plant performance by using a filtering tertiary treatment unit. J. Environ. Manag. 2019;232:336–341. doi: 10.1016/j.jenvman.2018.11.076. PubMed DOI
Subari F., Kamaruzzaman M.A., Sheikh Abdullah S.R., Hasan H.A., Othman A.R., Abdullah S.R.S., Hasan H.A., Othman A.R. Simultaneous removal of ammonium and manganese in slow sand biofilter (SSB) by naturally grown bacteria from lake water and its diverse microbial community. J. Environ. Chem. Eng. 2018;6:6351–6358. doi: 10.1016/j.jece.2018.09.053. DOI
Liu L., Fu Y., Wei Q., Liu Q., Wu L., Wu J., Huo W. Applying bio-slow sand filtration for water treatment. Polish J. Environ. Stud. 2019;28:2243–2251. doi: 10.15244/pjoes/89544. DOI
Lamon A.W., Faria Maciel P.M., Campos J.R., Corbi J.J., Dunlop P.S.M., Fernandez-Ibañez P., Anthony Byrne J., Sabogal-Paz L.P. Household slow sand filter efficiency with schmutzdecke evaluation by microsensors. Environ. Technol. 2022;43:4042–4053. doi: 10.1080/09593330.2021.1939795. PubMed DOI
Bellamy W.D., Hendricks D.W., Logsdon G.S. Slow sand filtration: influences of selected process variables. J. AWWA (Am. Water Works Assoc.) 1985;77:62–66. doi: 10.1002/j.1551-8833.1985.tb05659.x. DOI
Nasser Fava N. de M., Terin U.C., Freitas B.L.S., Sabogal-Paz L.P., Fernandez-Ibañez P., Anthony Byrne J. Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water. Environ. Technol. 2022;43:1583–1592. doi: 10.1080/09593330.2020.1841834. PubMed DOI
Asahi Y., Miura J., Tsuda T., Kuwabata S., Tsunashima K., Noiri Y., Sakata T., Ebisu S., Hayashi M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. Amb. Express. 2015;5:6. doi: 10.1186/s13568-015-0097-4. PubMed DOI PMC
Bossù M., Selan L., Artini M., Relucenti M., Familiari G., Papa R., Vrenna G., Spigaglia P., Barbanti F., Salucci A., Di Giorgio G., Rau J.V., Polimeni A. Characterization of scardovia wiggsiae biofilm by original scanning electron microscopy protocol. Microorganisms. 2020;8:807. doi: 10.3390/microorganisms8060807. PubMed DOI PMC
Punia S., Wu L., Khodadoust A.P. Adsorption of hexavalent chromium from water using manganese-aluminum coated sand: kinetics, equilibrium, effect of pH and ionic strength. J. Environ. Sci. Heal. Part A. 2021;56:334–345. doi: 10.1080/10934529.2021.1877513. PubMed DOI
Du Y., Rees N., O'Hare D. A study of phosphate absorption by magnesium iron hydroxycarbonate. Dalt. Trans. 2009:8197. doi: 10.1039/b909853d. PubMed DOI
Dontsova K.M., Norton L.D., Johnston C.T. Calcium and magnesium effects on ammonia adsorption by soil clays. Soil Sci. Soc. Am. J. 2005;69:1225–1232. doi: 10.2136/sssaj2004.0335. DOI