Prophylactic Oropharyngeal Surfactant for Preterm Newborns at Birth: A Randomized Clinical Trial
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
    PubMed
          
           38079168
           
          
          
    PubMed Central
          
           PMC10714282
           
          
          
    DOI
          
           10.1001/jamapediatrics.2023.5082
           
          
          
      PII:  2812571
  
    Knihovny.cz E-zdroje
    
  
              
      
- MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- orofarynx MeSH
- plicní surfaktanty * terapeutické užití MeSH
- porodní hmotnost MeSH
- povrchově aktivní látky MeSH
- respirační insuficience * farmakoterapie MeSH
- syndrom respirační tísně novorozenců * prevence a kontrola farmakoterapie MeSH
- trvalý přetlak v dýchacích cestách metody MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- plicní surfaktanty * MeSH
- povrchově aktivní látky MeSH
IMPORTANCE: Preterm newborns at risk of respiratory distress syndrome are supported with continuous positive airway pressure (CPAP). Many newborns worsen despite CPAP and are intubated for surfactant administration, an effective therapy for treatment of respiratory distress syndrome. Endotracheal intubation is associated with adverse effects. Pharyngeal administration of surfactant to preterm animals and humans has been reported as an alternative. OBJECTIVE: To assess whether giving prophylactic oropharyngeal surfactant to preterm newborns at birth would reduce the rate of intubation for respiratory failure. DESIGN, SETTING, AND PARTICIPANTS: This unblinded, parallel-group randomized clinical trial (Prophylactic Oropharyngeal Surfactant for Preterm Infants [POPART]) was conducted from December 17, 2017, to September 11, 2020, at 9 tertiary neonatal intensive care units in 6 European countries. Newborns born before 29 weeks of gestation without severe congenital anomalies, for whom intensive care was planned, were eligible for inclusion. The data were analyzed from July 27, 2022, to June 20, 2023. INTERVENTION: Newborns were randomly assigned to receive oropharyngeal surfactant at birth in addition to CPAP or CPAP alone. Randomization was stratified by center and gestational age (GA). MAIN OUTCOMES AND MEASURES: The primary outcome was intubation in the delivery room for bradycardia and/or apnea or in the neonatal intensive care unit for prespecified respiratory failure criteria within 120 hours of birth. Caregivers were not masked to group assignment. RESULTS: Among 251 participants (mean [SD] GA, 26 [1.5] weeks) who were well matched at study entry, 126 (69 [54.8%] male) with a mean (SD) birth weight of 858 (261) grams were assigned to the oropharyngeal surfactant group, and 125 (63 [50.4%] male) with a mean (SD) birth weight of 829 (253) grams were assigned to the control group. The proportion of newborns intubated within 120 hours was not different between the groups (80 [63.5%) in the oropharyngeal surfactant group and 81 [64.8%] in the control group; relative risk, 0.98 [95% CI, 0.81-1.18]). More newborns assigned to the oropharyngeal surfactant group were diagnosed with and treated for pneumothorax (21 [16.6%] vs 8 [6.4%]; P = .04). CONCLUSIONS AND RELEVANCE: This randomized clinical trial found that administration of prophylactic oropharyngeal surfactant to newborns born before 29 weeks' GA did not reduce the rate of intubation in the first 120 hours of life. These findings suggest that administration of surfactant into the oropharynx immediately after birth in addition to CPAP should not be routinely used. TRIAL REGISTRATION: EudraCT: 2016-004198-41.
Centre Hospitalier Universitaire de Liège Liège Belgium
Charles University Prague Czech Republic
Clinical Research Centre School of Medicine University College Dublin Dublin Ireland
Coombe Women and Infants University Hospital Dublin Ireland
Department of Pediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway
Haukeland University Hospital Bergen Norway
Hospital de Braga Braga Portugal
Karolinska Institutet Stockholm Sweden
Karolinska University Hospital Stockholm Sweden
National Children's Research Centre Dublin Ireland
National Maternity Hospital Dublin Ireland
Zobrazit více v PubMed
Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97(5, pt 1):517-523. doi:10.1001/archpedi.1959.02070010519001 PubMed DOI
Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1(8159):55-59. doi:10.1016/S0140-6736(80)90489-4 PubMed DOI
Enhorning G, Shennan A, Possmayer F, Dunn M, Chen CP, Milligan J. Prevention of neonatal respiratory distress syndrome by tracheal instillation of surfactant: a randomized clinical trial. Pediatrics. 1985;76(2):145-153. doi:10.1542/peds.76.2.145 PubMed DOI
Ten Centre Study Group . Ten Centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. BMJ (Clin Res Ed). 1987;294(6578):991-996. doi:10.1136/bmj.294.6578.991 PubMed DOI PMC
Merritt TA, Hallman M, Bloom BT, et al. . Prophylactic treatment of very premature infants with human surfactant. N Engl J Med. 1986;315(13):785-790. doi:10.1056/NEJM198609253151301 PubMed DOI
Barton SK, Tolcos M, Miller SL, et al. . Ventilation-induced brain injury in preterm neonates: a review of potential therapies. Neonatology. 2016;110(2):155-162. doi:10.1159/000444918 PubMed DOI
Zur KB, Douglas J, Carroll LM. Intubation-related laryngeal deficiency and vocal fold immobility in pediatric premature patients. Laryngoscope. 2021;131(11):2550-2557. doi:10.1002/lary.29592 PubMed DOI
Kalikkot Thekkeveedu R, El-Saie A, Prakash V, Katakam L, Shivanna B. Ventilation-induced lung injury (VILI) in neonates: evidence-based concepts and lung-protective strategies. J Clin Med. 2022;11(3):557. doi:10.3390/jcm11030557 PubMed DOI PMC
Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;(3):CD000510. doi:10.1002/14651858.CD000510.pub2 PubMed DOI
Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB; COIN Trial Investigators . Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700-708. doi:10.1056/NEJMoa072788 PubMed DOI
Dunn MS, Kaempf J, de Klerk A, et al. ; Vermont Oxford Network DRM Study Group . Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128(5):e1069-e1076. doi:10.1542/peds.2010-3848 PubMed DOI
Finer NN, Carlo WA, Walsh MC, et al. ; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network . Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970-1979. doi:10.1056/NEJMoa0911783 PubMed DOI PMC
Göpel W, Kribs A, Ziegler A, et al. ; German Neonatal Network . Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet. 2011;378(9803):1627-1634. doi:10.1016/S0140-6736(11)60986-0 PubMed DOI
Bellos I, Fitrou G, Panza R, Pandita A. Comparative efficacy of methods for surfactant administration: a network meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021;106(5):474-487. doi:10.1136/archdischild-2020-319763 PubMed DOI
Dargaville PA, Aiyappan A, De Paoli AG, et al. . Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Arch Dis Child Fetal Neonatal Ed. 2013;98(2):F122-F126. doi:10.1136/archdischild-2011-301314 PubMed DOI
Kanmaz HG, Erdeve O, Canpolat FE, Mutlu B, Dilmen U. Surfactant administration via thin catheter during spontaneous breathing: randomized controlled trial. Pediatrics. 2013;131(2):e502-e509. doi:10.1542/peds.2012-0603 PubMed DOI
Kribs A, Roll C, Göpel W, et al. ; NINSAPP Trial Investigators . Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 2015;169(8):723-730. doi:10.1001/jamapediatrics.2015.0504 PubMed DOI
Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021;5(5):CD011672. PubMed PMC
Dargaville PA, Kamlin COF, Orsini F, et al. ; OPTIMIST-A Trial Investigators . Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST-A randomized clinical trial. JAMA. 2021;326(24):2478-2487. doi:10.1001/jama.2021.21892 PubMed DOI PMC
Berggren E, Liljedahl M, Winbladh B, et al. . Pilot study of nebulized surfactant therapy for neonatal respiratory distress syndrome. Acta Paediatr. 2000;89(4):460-464. doi:10.1080/080352500750028195 PubMed DOI
Finer NNMT, Merritt TA, Bernstein G, Job L, Mazela J, Segal R. An open label, pilot study of Aerosurf® combined with nCPAP to prevent RDS in preterm neonates. J Aerosol Med Pulm Drug Deliv. 2010;23(5):303-309. doi:10.1089/jamp.2009.0758 PubMed DOI
Minocchieri S, Berry CA, Pillow JJ; CureNeb Study Team . Nebulised surfactant to reduce severity of respiratory distress: a blinded, parallel, randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F313-F319. doi:10.1136/archdischild-2018-315051 PubMed DOI PMC
Abdel-Latif ME, Osborn DA. Nebulised surfactant in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2012;10:CD008310. doi:10.1002/14651858.CD008310.pub2 PubMed DOI PMC
Gaertner VD, Minocchieri S, Waldmann AD, Mühlbacher T, Bassler D, Rüegger CM; SUNSET study group . Prophylactic surfactant nebulisation for the early aeration of the preterm lung: a randomised clinical trial. Arch Dis Child Fetal Neonatal Ed. 2023;108(3):217-223. doi:10.1136/archdischild-2022-324519 PubMed DOI
Cummings JJ, Gerday E, Minton S, et al. ; AERO-02 STUDY INVESTIGATORS . Aerosolized calfactant for newborns with respiratory distress: a randomized trial. Pediatrics. 2020;146(5):e20193967. doi:10.1542/peds.2019-3967 PubMed DOI
Attridge JTSC, Stewart C, Stukenborg GJ, Kattwinkel J. Administration of rescue surfactant by laryngeal mask airway: lessons from a pilot trial. Am J Perinatol. 2013;30(3):201-206. doi:10.1055/s-0032-1323592 PubMed DOI
Roberts KD, Brown R, Lampland AL, et al. . Laryngeal mask airway for surfactant administration in neonates: a randomized, controlled trial. J Pediatr. 2018;193:40-46.e1. doi:10.1016/j.jpeds.2017.09.068 PubMed DOI
Abdel-Latif ME, Osborn DA. Laryngeal mask airway surfactant administration for prevention of morbidity and mortality in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2011;(7):CD008309. doi:10.1002/14651858.CD008309.pub2 PubMed DOI
Gallup JA, Ndakor SM, Pezzano C, et al. . Randomized trial of surfactant therapy via laryngeal mask airway versus brief tracheal intubation in neonates born preterm. J Pediatr. 2023;254(17):17-24.e2. doi:10.1016/j.jpeds.2022.10.009 PubMed DOI
Bohlin K, Bouhafs RK, Jarstrand C, Curstedt T, Blennow M, Robertson B. Spontaneous breathing or mechanical ventilation alters lung compliance and tissue association of exogenous surfactant in preterm newborn rabbits. Pediatr Res. 2005;57(5 pt 1):624-630. doi:10.1203/01.PDR.0000156502.84909.BC PubMed DOI
Kattwinkel J, Robinson M, Bloom BT, Delmore P, Ferguson JE. Technique for intrapartum administration of surfactant without requirement for an endotracheal tube. J Perinatol. 2004;24(6):360-365. PubMed
Lamberska T, Settelmayerova E, Smisek J, Luksova M, Maloskova G, Plavka R. Oropharyngeal surfactant can improve initial stabilisation and reduce rescue intubation in infants born below 25 weeks of gestation. Acta Paediatr. 2018;107(1):73-78. PubMed
Abdel-Latif ME, Osborn DA. Pharyngeal instillation of surfactant before the first breath for prevention of morbidity and mortality in preterm infants at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2011;(3):CD008311. doi:10.1002/14651858.CD008311.pub2 PubMed DOI
Murphy MC, Galligan M, Molloy B, Hussain R, Doran P, O’Donnell C. Study protocol for the POPART study—Prophylactic Oropharyngeal Surfactant for Preterm Infants: A Randomised Trial. BMJ Open. 2020;10(7):e035994. doi:10.1136/bmjopen-2019-035994 PubMed DOI PMC
Schulz KF, Altman DG, Moher D; CONSORT Group . CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi:10.1136/bmj.c332 PubMed DOI PMC
Wyckoff MH, Aziz K, Escobedo MB, et al. . Part 13: neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18)(suppl 2):S543-S560. doi:10.1161/CIR.0000000000000267 PubMed DOI
Harris PA, Taylor R, Minor BL, et al. ; REDCap Consortium . The REDCap Consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208 PubMed DOI PMC
Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162. doi:10.1186/s12874-017-0442-1 PubMed DOI PMC
Kirpalani H, Ratcliffe SJ, Keszler M, et al. ; SAIL Site Investigators . Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA. 2019;321(12):1165-1175. doi:10.1001/jama.2019.1660 PubMed DOI PMC
Donaldsson S, Drevhammar T, Li Y, et al. ; CORSAD Trial Investigators . Comparison of respiratory support after delivery in infants born before 28 weeks’ gestational age: the CORSAD randomized clinical trial. JAMA Pediatr. 2021;175(9):911-918. doi:10.1001/jamapediatrics.2021.1497 PubMed DOI PMC
