MRI of cerebral oedema in ischaemic stroke and its current use in routine clinical practice
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38102491
PubMed Central
PMC10859334
DOI
10.1007/s00234-023-03262-2
PII: 10.1007/s00234-023-03262-2
Knihovny.cz E-zdroje
- Klíčová slova
- DWI-ASPECTS, DWI-FLAIR mismatch, Ischaemic stroke,
- MeSH
- cerebrální infarkt MeSH
- cévní mozková příhoda * diagnostické zobrazování terapie MeSH
- difuzní magnetická rezonance metody MeSH
- edém mozku * MeSH
- ischemická cévní mozková příhoda * MeSH
- ischemie mozku * diagnostické zobrazování terapie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Currently, with the knowledge of the role of collateral circulation in the development of cerebral ischaemia, traditional therapeutic windows are being prolonged, with time not being the only criterion. Instead, a more personalised approach is applied to select additional patients who might benefit from active treatment. This review briefly describes the current knowledge of the pathophysiology of the development of early ischaemic changes, the capabilities of MRI to depict such changes, and the basics of the routinely used imaging techniques broadly available for the assessment of individual phases of cerebral ischaemia, and summarises the possible clinical use of routine MR imaging, including patient selection for active treatment and assessment of the outcome on the basis of imaging.
Department of Neurology Palacky University and University Hospital Olomouc Czech Republic
Department of Radiology Palacky University and University Hospital Olomouc Czech Republic
Fakultní nemocnice Olomouc Radiologická klinika Zdravotníků 248 7 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
WHO . WHO methods and data sources for country-level causes of death 2000-2019. Geneva: World Health Organization; 2020.
Prayson RA, Yeaney G. Neuropathology. A volume in the series: foundations in diagnostic pathology. 3. Philadeplhia: Elsevier; 2022. pp. 40–76.
Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis. 2016;1862:483–491. doi: 10.1016/j.bbadis.2015.11.014. PubMed DOI
Ho M-L, Rojas R, Eisenberg RL. Cerebral edema. AJR Am J Roentgenol. 2012;199:W258–W273. doi: 10.2214/AJR.11.8081. PubMed DOI
Kaufmann AM, Firlik AD, Fukui MB, et al. Ischemic core and penumbra in human stroke. Stroke. 1998;30:93–99. doi: 10.1161/01.STR.30.1.93. PubMed DOI
Pierpaoli C, Alger JR, Righini A, et al. High temporal resolution diffusion MRI of global cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 1996;16:892–905. doi: 10.1097/00004647-199609000-00013. PubMed DOI
Han W, Song Y, Rocha M, Shi Y. Ischemic brain edema: emerging cellular mechanisms and therapeutic approaches. Neurobiol Dis. 2023;178:106029. doi: 10.1016/j.nbd.2023.106029. PubMed DOI
Qin C, Yang S, Chu Y-H, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Sig Transduct Target Ther. 2022;7:215. doi: 10.1038/s41392-022-01064-1. PubMed DOI PMC
Jung S, Wiest R, Gralla J et al (2017) Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss Med Wkly. 10.4414/smw.2017.14538 PubMed
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36:513–538. doi: 10.1177/0271678X15617172. PubMed DOI PMC
Dalby T, Wohl E, Dinsmore M, et al. Pathophysiology of cerebral edema—a comprehensive review. J Neuroanaesth Crit Care. 2021;08:163–172. doi: 10.1055/s-0040-1721165. DOI
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. J Neurosurg. 2007;22:1–9. doi: 10.3171/foc.2007.22.5.3. PubMed DOI PMC
Klatzo I. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967;26:1–14. doi: 10.1097/00005072-196701000-00001. PubMed DOI
Rosenblum WI. Cytotoxic edema: monitoring its magnitude and contribution to brain swelling. J Neuropathol Exp Neurol. 2007;66:771–778. doi: 10.1097/nen.0b013e3181461965. PubMed DOI
Luo Z, Ovcjak A, Wong R, et al. Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin. 2020;41:1272–1288. doi: 10.1038/s41401-020-00503-5. PubMed DOI PMC
Simard JM, Kent TA, Chen M, et al. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–268. doi: 10.1016/S1474-4422(07)70055-8. PubMed DOI PMC
Leng T, Shi Y, Xiong Z-G, Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol. 2014;115:189–209. doi: 10.1016/j.pneurobio.2013.12.008. PubMed DOI PMC
Zhang X, Huang P, Zhang R. Evaluation and prediction of post-stroke cerebral edema based on neuroimaging. Front Neurol. 2022;12:763018. doi: 10.3389/fneur.2021.763018. PubMed DOI PMC
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9. doi: 10.1093/bja/aem131. PubMed DOI
Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4. 10.1126/scitranslmed.3003748 PubMed PMC
Yang B, Zador Z, Verkman AS. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem. 2008;283:15280–15286. doi: 10.1074/jbc.M801425200. PubMed DOI PMC
Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–163. doi: 10.1038/72256. PubMed DOI
Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Correlation of cerebral hypoxic-ischemic T2 changes with tissue alterations in water content and protein extravasation. Stroke. 2001;32:958–963. doi: 10.1161/01.STR.32.4.958. PubMed DOI
Naruse S, Horikawa Y, Tanaka C, et al. Proton nuclear magnetic resonance studies on brain edema. J Neurosurg. 1982;56:747–752. doi: 10.3171/jns.1982.56.6.0747. PubMed DOI
Axer H, Gräβel D, Brämer D, et al. Time course of diffusion imaging in acute brainstem infarcts. J Magn Reson Imaging. 2007;26:905–912. doi: 10.1002/jmri.21088. PubMed DOI
Keep RF, Andjelkovic AV, Xi G. Primer on Cerebrovascular Diseases. Elsevier; 2017. Cytotoxic and vasogenic brain edema; pp. 145–149.
Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10:978–986. doi: 10.1016/S1474-4422(11)70192-2. PubMed DOI
Aoki J, Kimura K, Iguchi Y, et al. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010;293:39–44. doi: 10.1016/j.jns.2010.03.011. PubMed DOI
Vagal A, Aviv R, Sucharew H, et al. Collateral clock is more important than time clock for tissue fate: a natural history study of acute ischemic strokes. Stroke. 2018;49:2102–2107. doi: 10.1161/STROKEAHA.118.021484. PubMed DOI PMC
Petkova M, Rodrigo S, Lamy C, et al. MR imaging helps predict time from symptom onset in patients with acute stroke: implications for patients with unknown onset time. Radiology. 2010;257:782–792. doi: 10.1148/radiol.10100461. PubMed DOI
Ebinger M, Galinovic I, Rozanski M, et al. Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke. 2010;41:250–255. doi: 10.1161/STROKEAHA.109.568410. PubMed DOI
Cheng B, Brinkmann M, Forkert ND, et al. Quantitative measurements of relative fluid-attenuated inversion recovery (FLAIR) signal intensities in acute stroke for the prediction of time from symptom onset. J Cereb Blood Flow Metab. 2013;33:76–84. doi: 10.1038/jcbfm.2012.129. PubMed DOI PMC
Wouters A, Dupont P, Norrving B, et al. Prediction of stroke onset is improved by relative fluid-attenuated inversion recovery and perfusion imaging compared to the visual diffusion-weighted imaging/fluid-attenuated inversion recovery mismatch. Stroke. 2016;47:2559–2564. doi: 10.1161/STROKEAHA.116.013903. PubMed DOI
Thomalla G, Rossbach P, Rosenkranz M, et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol. 2009;65:724–732. doi: 10.1002/ana.21651. PubMed DOI
Song SS, Latour LL, Ritter CH, et al. A pragmatic approach using magnetic resonance imaging to treat ischemic strokes of unknown onset time in a thrombolytic trial. Stroke. 2012;43:2331–2335. doi: 10.1161/STROKEAHA.111.630947. PubMed DOI PMC
Ziegler A, Ebinger M, Fiebach JB, et al. Judgment of FLAIR signal change in DWI–FLAIR mismatch determination is a challenge to clinicians. J Neurol. 2012;259:971–973. doi: 10.1007/s00415-011-6284-6. PubMed DOI
Fahed R, Lecler A, Sabben C, et al. DWI-ASPECTS (diffusion-weighted imaging–alberta stroke program early computed tomography scores) and DWI-FLAIR (diffusion-weighted imaging–fluid attenuated inversion recovery) mismatch in thrombectomy candidates: an intrarater and interrater agreement study. Stroke. 2018;49:223–227. doi: 10.1161/STROKEAHA.117.019508. PubMed DOI
Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–622. doi: 10.1056/NEJMoa1804355. PubMed DOI
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2019;50:e344–e418. doi: 10.1161/STR.0000000000000211. PubMed DOI
Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J. 2021;6:1–62. doi: 10.1177/2396987321989865. PubMed DOI PMC
Huisa BN, Liebeskind DS, Raman R, et al. DWI – FLAIR mismatch in nocturnal strokes patients with unknown time of onset. J Stroke Cerebrovasc Dis. 2014;22:972–977. doi: 10.1016/j.jstrokecerebrovasdis.2012.01.004. PubMed DOI PMC
Schwamm LH, Wu O, Song SS, et al. Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann Neurol. 2018;83:980–993. doi: 10.1002/ana.25235. PubMed DOI PMC
Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442. PubMed DOI
Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973. PubMed DOI PMC
Kranz PG, Eastwood JD. Does diffusion-weighted imaging represent the ischemic core? an evidence-based systematic review. AJNR Am J Neuroradiol. 2009;30:1206–1212. doi: 10.3174/ajnr.A1547. PubMed DOI PMC
Yoo AJ, Pulli B, Gonzalez RG. Imaging-based treatment selection for intravenous and intra-arterial stroke therapies: a comprehensive review. Expert Rev Cardiovasc Ther. 2011;9:857–876. doi: 10.1586/erc.11.56. PubMed DOI PMC
Barber PA. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol. 2005;76:1528–1533. doi: 10.1136/jnnp.2004.059261. PubMed DOI PMC
Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000;355:1670–1674. doi: 10.1016/S0140-6736(00)02237-6. PubMed DOI
Zaidat OO, Kasab SA, Sheth S, et al. TESLA trial: rationale, protocol, and design. Stroke Vasc Neurol. 2023;3:e000787. doi: 10.1161/SVIN.122.000787. DOI
Sarraj A, Hassan AE, Abraham MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023;388:1259–1271. doi: 10.1056/NEJMoa2214403. PubMed DOI
Broocks G, Meyer L, McDonough R, et al. The benefit of thrombectomy in patients with low ASPECTS is a matter of shades of gray—what current trials may have missed. Front Neurol. 2022;12:718046. doi: 10.3389/fneur.2021.718046. PubMed DOI PMC
Bing F, Berger I, Fabry A, et al. Intra- and inter-rater consistency of dual assessment by radiologist and neurologist for evaluating DWI-ASPECTS in ischemic stroke. Rev Neurol. 2022;178:219–225. doi: 10.1016/j.neurol.2021.08.007. PubMed DOI
Xu X-Q, Chu Y, Shen G-C et al (2022) Prognostic value of ASPECTS on post-treatment diffusion-weighted imaging for acute ischemic stroke patients after endovascular thrombectomy: comparison with infarction volume. Eur Radiol. 10.1007/s00330-022-08888-z PubMed
Nezu T, Koga M, Kimura K, et al. Pretreatment ASPECTS on DWI predicts 3-month outcome following rt-PA: SAMURAI rt-PA Registry. Neurology. 2010;75:555–561. doi: 10.1212/WNL.0b013e3181eccf78. PubMed DOI
Kimura K, Iguchi Y, Shibazaki K, et al. Large ischemic lesions on diffusion-weighted imaging done before intravenous tissue plasminogen activator thrombolysis predicts a poor outcome in patients with acute stroke. Stroke. 2008;39:2388–2391. doi: 10.1161/STROKEAHA.107.510917. PubMed DOI
Nezu T, Koga M, Nakagawara J, et al. Early ischemic change on CT versus diffusion-weighted imaging for patients with stroke receiving intravenous recombinant tissue-type plasminogen activator therapy: stroke acute management with urgent risk-factor assessment and improvement (SAMURAI) rt-PA registry. Stroke. 2011;42:2196–2200. doi: 10.1161/STROKEAHA.111.614404. PubMed DOI
Schröder J, Thomalla G. A critical review of Alberta stroke program early CT score for evaluation of acute stroke imaging. Front Neurol. 2017;7:245. doi: 10.3389/fneur.2016.00245. PubMed DOI PMC
Davalos A, Blanco M, Pedraza S, et al. The clinical-DWI mismatch: a new diagnostic approach to the brain tissue at risk of infarction. Neurology. 2004;62:2187–2192. doi: 10.1212/01.WNL.0000130570.41127.EA. PubMed DOI
Krongold M, Almekhlafi MA, Demchuk AM, et al. Final infarct volume estimation on 1-week follow-up MR imaging is feasible and is dependent on recanalization status. NeuroImage Clin. 2015;7:1–6. doi: 10.1016/j.nicl.2014.10.010. PubMed DOI PMC
Panni P, Lapergue B, Maïer B, et al. Clinical impact and predictors of diffusion weighted imaging (DWI) reversal in stroke patients with diffusion weighted imaging Alberta stroke program early CT score 0–5 treated by thrombectomy: diffusion weighted imaging reversal in large volume stroke. Clin Neuroradiol. 2022;32(4):939–950. doi: 10.1007/s00062-022-01156-z. PubMed DOI
Liberman AL, Prabhakaran S. Stroke chameleons and stroke mimics in the emergency department. Curr Neurol Neurosci Rep. 2017;17:15. doi: 10.1007/s11910-017-0727-0. PubMed DOI
Burns JD, Rindler RS, Carr C, et al. Delay in diagnosis of basilar artery stroke. Neurocrit Care. 2016;24:172–179. doi: 10.1007/s12028-015-0211-0. PubMed DOI
Leira EC, Muir KW. EXTEND Trial: towards a more inclusive but complex thrombolysis. Stroke. 2019;50:2637–2639. doi: 10.1161/STROKEAHA.119.026249. PubMed DOI