High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38113351
PubMed Central
PMC10782415
DOI
10.1021/acs.analchem.3c02652
Knihovny.cz E-zdroje
- MeSH
- apolipoproteiny E MeSH
- chromatografie kapalinová metody MeSH
- fenotyp MeSH
- kapalinová chromatografie-hmotnostní spektrometrie * MeSH
- lidé MeSH
- lipidomika MeSH
- reprodukovatelnost výsledků MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apolipoproteiny E MeSH
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
Zobrazit více v PubMed
Holčapek M.; Liebisch G.; Ekroos K. Lipidomic Analysis. Anal. Chem. 2018, 90 (7), 4249–4257. 10.1021/acs.analchem.7b05395. PubMed DOI
Rustam Y. H.; Reid G. E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90 (1), 374–397. 10.1021/acs.analchem.7b04836. PubMed DOI
Cajka T.; Fiehn O. Comprehensive Analysis of Lipids in Bio-Logical Systems by Liquid Chromatog-Raphy-Mass Spectrometry. Trends Analyt Chem. 2014, 61, 192–206. 10.1016/j.trac.2014.04.017. PubMed DOI PMC
Coman C.; Solari F. A.; Hentschel A.; Sickmann A.; Zahedi R. P.; Ahrends R. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol. Cell. Proteomics 2016, 15 (4), 1435–1466. 10.1074/mcp.M115.053702. PubMed DOI PMC
Wilm M.; Mann M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68 (1), 1–8. 10.1021/ac9509519. PubMed DOI
Zardini Buzatto A.; Kwon B. K.; Li L. Development of a NanoLC-MS Workflow for High-Sensitivity Global Lipidomic Analysis. Anal. Chim. Acta 2020, 1139, 88–99. 10.1016/j.aca.2020.09.001. PubMed DOI
Cattaneo A.; Martano G.; Restuccia U.; Tronci L.; Bianchi M.; Bachi A.; Matafora V. Opti-NQL: An Optimized, Versatile and Sensitive Nano-LC Method for MS-Based Lipidomics Analysis. Metabolites 2021, 11 (11), 720.10.3390/metabo11110720. PubMed DOI PMC
Danne-Rasche N.; Coman C.; Ahrends R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal. Chem. 2018, 90 (13), 8093–8101. 10.1021/acs.analchem.8b01275. PubMed DOI
He Y.; Brademan D. R.; Hutchins P. D.; Overmyer K. A.; Coon J. J. Maximizing MS/MS Acquisition for Lipidomics Using Capillary Separation and Orbitrap Tribrid Mass Spectrometer. Anal. Chem. 2022, 94 (7), 3394–3399. 10.1021/acs.analchem.1c05552. PubMed DOI PMC
Wilson S. R.; Vehus T.; Berg H. S.; Lundanes E. Nano-LC in Proteomics: Recent Advances and Approaches. Bioanalysis 2015, 7 (14), 1799–1815. 10.4155/bio.15.92. PubMed DOI
Bian Y.; The M.; Giansanti P.; Mergner J.; Zheng R.; Wilhelm M.; Boychenko A.; Kuster B. Identification of 7 000–9 000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC-MS/MS. Anal. Chem. 2021, 93 (25), 8687–8692. 10.1021/acs.analchem.1c00738. PubMed DOI
Lenčo J.; Vajrychová M.; Pimková K.; Prokšová M.; Benková M.; Klimentová J.; Tambor V.; Soukup O. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90 (8), 5381–5389. 10.1021/acs.analchem.8b00525. PubMed DOI
Bian Y.; Zheng R.; Bayer F. P.; Wong C.; Chang Y. C.; Meng C.; Zolg D. P.; Reinecke M.; Zecha J.; Wiechmann S.; Heinzlmeir S.; Scherr J.; Hemmer B.; Baynham M.; Gingras A. C.; Boychenko O.; Kuster B. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC-MS/MS. Nat. Commun. 2020, 11 (1), 1–12. 10.1038/s41467-019-13973-x. PubMed DOI PMC
Kuster B.; Bian Y.; Bayer F. P.; Chang Y. C.; Meng C.; Hoefer S.; Deng N.; Zheng R.; Boychenko O. Robust Microflow LC-MS/MS for Proteome Analysis: 38 000 Runs and Counting. Anal. Chem. 2021, 93 (8), 3686–3690. 10.1021/acs.analchem.1c00257. PubMed DOI PMC
Gray N.; Lewis M. R.; Plumb R. S.; Wilson I. D.; Nicholson J. K. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies. J. Proteome Res. 2015, 14 (6), 2714–2721. 10.1021/acs.jproteome.5b00203. PubMed DOI
Gray N.; Adesina-Georgiadis K.; Chekmeneva E.; Plumb R. S.; Wilson I. D.; Nicholson J. K. Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies. Anal. Chem. 2016, 88 (11), 5742–5751. 10.1021/acs.analchem.6b00038. PubMed DOI
Tarazona P.; Feussner K.; Feussner I. An Enhanced Plant Lipidomics Method Based on Multiplexed Liquid Chromatography-Mass Spectrometry Reveals Additional Insights into Cold- and Drought-Induced Membrane Remodeling. Plant Journal 2015, 84 (3), 621–633. 10.1111/tpj.13013. PubMed DOI
Triebl A.; Trötzmüller M.; Hartler J.; Stojakovic T.; Köfeler H. C. Lipidomics by Ultrahigh Performance Liquid Chromatography-High Resolution Mass Spectrometry and Its Application to Complex Biological Samples. Journal of Chromatography B 2017, 1053, 72–80. 10.1016/j.jchromb.2017.03.027. PubMed DOI PMC
Sakallioglu I. T.; Maroli A. S.; Leite A. D. L.; Powers R. A Reversed Phase Ultra-High-Performance Liquid Chromatography-Data Independent Mass Spectrometry Method for the Rapid Identification of Mycobacterial Lipids. J. Chromatogr A 2022, 1662, 462739.10.1016/j.chroma.2021.462739. PubMed DOI PMC
Di Carlo C.; Sousa B. C.; Manfredi M.; Brandi J.; Dalla Pozza E.; Marengo E.; Palmieri M.; Dando I.; Wakelam M. J. O.; Lopez-Clavijo A. F.; Cecconi D. Integrated Lipidomics and Proteomics Reveal Cardiolipin Alterations, Upregulation of HADHA and Long Chain Fatty Acids in Pancreatic Cancer Stem Cells. Sci. Rep 2021, 11 (1), 13297.10.1038/s41598-021-92752-5. PubMed DOI PMC
Lancaster M. A.; Renner M.; Martin C. A.; Wenzel D.; Bicknell L. S.; Hurles M. E.; Homfray T.; Penninger J. M.; Jackson A. P.; Knoblich J. A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501 (7467), 373–379. 10.1038/nature12517. PubMed DOI PMC
Grenier K.; Kao J.; Diamandis P. Three-Dimensional Modeling of Human Neurodegeneration: Brain Organoids Coming of Age. Mol. Psychiatry 2020, 25 (2), 254–274. 10.1038/s41380-019-0500-7. PubMed DOI
Nascimento J. M.; Saia-Cereda V. M.; Sartore R. C.; da Costa R. M.; Schitine C. S.; Freitas H. R.; Murgu M.; de Melo Reis R. A.; Rehen S. K.; Martins-de-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol. 2019, 7, 1–16. 10.3389/fcell.2019.00303. PubMed DOI PMC
Kathuria A.; Lopez-Lengowski K.; Vater M.; McPhie D.; Cohen B. M.; Karmacharya R. Transcriptome Analysis and Functional Characterization of Cerebral Organoids in Bipolar Disorder. Genome Med. 2020, 12 (1), 1–16. 10.1186/s13073-020-00733-6. PubMed DOI PMC
Zhao J.; Fu Y.; Yamazaki Y.; Ren Y.; Davis M. D.; Liu C.-C.; Lu W.; Wang X.; Chen K.; Cherukuri Y.; Jia L.; Martens Y. A.; Job L.; Shue F.; Nguyen T. T.; Younkin S. G.; Graff-Radford N. R.; Wszolek Z. K.; Brafman D. A.; Asmann Y. W.; Ertekin-Taner N.; Kanekiyo T.; Bu G. APOE4 Exacerbates Synapse Loss and Neurodegeneration in Alzheimer’s Disease Patient IPSC-Derived Cerebral Organoids. Nat. Commun. 2020, 11 (1), 5540.10.1038/s41467-020-19264-0. PubMed DOI PMC
Gadara D.; Coufalikova K.; Bosak J.; Smajs D.; Spacil Z. Systematic Feature Filtering in Exploratory Metabolomics: Application toward Biomarker Discovery. Anal. Chem. 2021, 93 (26), 9103–9110. 10.1021/acs.analchem.1c00816. PubMed DOI
Huynh K.; Barlow C. K.; Jayawardana K. S.; Weir J. M.; Mellett N. A.; Cinel M.; Magliano D. J.; Shaw J. E.; Drew B. G.; Meikle P. J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019, 26 (1), 71–84. 10.1016/j.chembiol.2018.10.008. PubMed DOI
Xuan Q.; Hu C.; Yu D.; Wang L.; Zhou Y.; Zhao X.; Li Q.; Hou X.; Xu G. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2018, 90 (12), 7608–7616. 10.1021/acs.analchem.8b01331. PubMed DOI PMC
Miranda A. M.; Bravo F. V.; Chan R. B.; Sousa N.; Di Paolo G.; Oliveira T. G. Differential Lipid Composition and Regulation along the Hippocampal Longitudinal Axis. Transl Psychiatry 2019, 9 (1), 144.10.1038/s41398-019-0478-6. PubMed DOI PMC
Liebisch G.; Fahy E.; Aoki J.; Dennis E. A.; Durand T.; Ejsing C. S.; Fedorova M.; Feussner I.; Griffiths W. J.; Köfeler H.; Merrill A. H.; Murphy R. C.; O’Donnell V. B.; Oskolkova O.; Subramaniam S.; Wakelam M. J. O.; Spener F. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61 (12), 1539–1555. 10.1194/jlr.S120001025. PubMed DOI PMC
Vaňková Z.; Peterka O.; Chocholoušková M.; Wolrab D.; Jirásko R.; Holčapek M. Retention Dependences Support Highly Confident Identification of Lipid Species in Human Plasma by Reversed-Phase UHPLC/MS. Anal Bioanal Chem. 2022, 414 (1), 319–331. 10.1007/s00216-021-03492-4. PubMed DOI
Koivusalo M.; Haimi P.; Heikinheimo L.; Kostiainen R.; Somerharju P. Quantitative Determination of Phospholipid Compositions by Esi-Ms: Effects of Acyl Chain Length, Unsaturation, and Lipid Concentration on Instrument Response. J. Lipid Res. 2001, 42 (4), 663–672. 10.1016/S0022-2275(20)31176-7. PubMed DOI
Cajka T.; Fiehn O. Comprehensive Analysis of Lipids in Biological Systems by Liquid Chromatography-Mass Spectrometry. Trends Anal Chem. 2014, 61, 192–206. 10.1016/j.trac.2014.04.017. PubMed DOI PMC
Schwaiger M.; Schoeny H.; El Abiead Y.; Hermann G.; Rampler E.; Koellensperger G. Merging Metabolomics and Lipidomics into One Analytical Run. Analyst 2019, 144 (1), 220–229. 10.1039/C8AN01219A. PubMed DOI
Li Z.; Zhang Q. Ganglioside Isomer Analysis Using Ion Polarity Switching Liquid Chromatography-Tandem Mass Spectrometry. Anal Bioanal Chem. 2021, 413 (12), 3269.10.1007/s00216-021-03262-2. PubMed DOI PMC
Koch E.; Wiebel M.; Hopmann C.; Kampschulte N.; Schebb N. H. Rapid Quantification of Fatty Acids in Plant Oils and Biological Samples by LC-MS. Anal Bioanal Chem. 2021, 413 (21), 5439–5451. 10.1007/s00216-021-03525-y. PubMed DOI PMC
Cajka T.; Smilowitz J. T.; Fiehn O. Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. Anal. Chem. 2017, 89 (22), 12360–12368. 10.1021/acs.analchem.7b03404. PubMed DOI
Forest A.; Ruiz M.; Bouchard B.; Boucher G.; Gingras O.; Daneault C.; Robillard Frayne I.; Rhainds D.; Tardif J. C.; Rioux J. D.; Des Rosiers C. Comprehensive and Reproducible Untargeted Lipidomic Workflow Using LC-QTOF Validated for Human Plasma Analysis. J. Proteome Res. 2018, 17 (11), 3657–3670. 10.1021/acs.jproteome.8b00270. PubMed DOI PMC
Medina J.; Borreggine R.; Teav T.; Gao L.; Ji S.; Carrard J.; Jones C.; Blomberg N.; Jech M.; Atkins A.; Martins C.; Schmidt-Trucksass A.; Giera M.; Cazenave-Gassiot A.; Gallart-Ayala H.; Ivanisevic J. Omic-Scale High-Throughput Quantitative LC-MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research. Anal. Chem. 2023, 95 (6), 3168–3179. 10.1021/acs.analchem.2c02598. PubMed DOI
Liebisch G.; Binder M.; Schifferer R.; Langmann T.; Schulz B.; Schmitz G. High Throughput Quantification of Cholesterol and Cholesteryl Ester by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS). Biochimica et Biophysica Acta (BBA) 2006, 1761 (1), 121–128. 10.1016/j.bbalip.2005.12.007. PubMed DOI
Sandhoff R.; Brügger B.; Jeckel D.; Lehmann W. D.; Wieland F. T. Determination of Cholesterol at the Low Picomole Level by Nano-Electrospray Ionization Tandem Mass Spectrometry. J. Lipid Res. 1999, 40 (1), 126–132. 10.1016/S0022-2275(20)33347-2. PubMed DOI
Li L.-H.; Dutkiewicz E. P.; Huang Y.-C.; Zhou H.-B.; Hsu C.-C. Analytical Methods for Cholesterol Quantification. J. Food Drug Anal 2019, 27 (2), 375–386. 10.1016/j.jfda.2018.09.001. PubMed DOI PMC
Zhao J.; Lu W.; Ren Y.; Fu Y; Martens Y. A.; Shue F.; Davis M. D.; Wang X.; Chen K.; Li F.; Liu C.-C.; Graff-Radford R.; Wszolek Z. K.; Younkin S. G.; Brafman D. A.; Ertekin-Taner N.; Asmann Y. W.; Dickson D. W.; Xu Z.; Pan M.; Han X.; Kanekiyo T.; Bu G. Apolipoprotein E Regulates Lipid Metabolism and α-Synuclein Pathology in Human IPSC-Derived Cerebral Organoids. Acta Neuropathol 2021, 142, 807–825. 10.1007/s00401-021-02361-9. PubMed DOI PMC
Liu X.; Yang C.; Chen P.; Zhang L.; Cao Y. The Uses of Transcriptomics and Lipidomics Indicated That Direct Contact with Graphene Oxide Altered Lipid Homeostasis through ER Stress in 3D Human Brain Organoids. Sci. Total Environ. 2022, 849, 157815.10.1016/j.scitotenv.2022.157815. PubMed DOI
Liao F.; Yoon H.; Kim J. Apolipoprotein e Metabolism and Functions in Brain and Its Role in Alzheimer’s Disease. Curr. Opin Lipidol 2017, 28 (1), 60–67. 10.1097/MOL.0000000000000383. PubMed DOI PMC
Safieh M.; Korczyn A. D.; Michaelson D. M. ApoE4: An Emerging Therapeutic Target for Alzheimer’s Disease. BMC Medicine 2019 17:1 2019, 17 (1), 1–17. 10.1186/s12916-019-1299-4. PubMed DOI PMC
Sienski G.; Narayan P.; Bonner J. M.; Kory N.; Boland S.; Arczewska A. A.; Ralvenius W. T.; Akay L.; Lockshin E.; He L.; Milo B.; Graziosi A.; Baru V.; Lewis C. A.; Kellis M.; Sabatini D. M.; Tsai L.-H.; Lindquist S. APOE4 Disrupts Intracellular Lipid Homeostasis in Human IPSC-Derived Glia. Sci. Transl Med. 2021, 13 (583), 4564.10.1126/scitranslmed.aaz4564. PubMed DOI PMC
Lin Y. T.; Seo J.; Gao F.; Feldman H. M.; Wen H. L.; Penney J.; Cam H. P.; Gjoneska E.; Raja W. K.; Cheng J.; Rueda R.; Kritskiy O.; Abdurrob F.; Peng Z.; Milo B.; Yu C. J.; Elmsaouri S.; Dey D.; Ko T.; Yankner B. A.; Tsai L. H. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human IPSC-Derived Brain Cell Types. Neuron 2018, 98 (6), 1141–1154. 10.1016/j.neuron.2018.05.008. PubMed DOI PMC
Proitsi P.; Kim M.; Whiley L.; Pritchard M.; Leung R.; Soininen H.; Kloszewska I.; Mecocci P.; Tsolaki M.; Vellas B.; Sham P.; Lovestone S.; Powell J. F.; Dobson R. J. B.; Legido-Quigley C. Plasma Lipidomics Analysis Finds Long Chain Cholesteryl Esters to Be Associated with Alzheimer’s Disease. Transl Psychiatry 2015, 5 (1), e494.10.1038/tp.2014.127. PubMed DOI PMC
Harayama T.; Riezman H. Understanding the Diversity of Membrane Lipid Composition. Nat. Rev. Mol. Cell Biol. 2018, 19 (5), 281–296. 10.1038/nrm.2017.138. PubMed DOI
Yang X.; Sheng W.; Sun G. Y.; Lee J. C. M. Effects of Fatty Acid Unsaturation Numbers on Membrane Fluidity and α-Secretase-Dependent Amyloid Precursor Protein Processing. Neurochem. Int. 2011, 58 (3), 321.10.1016/j.neuint.2010.12.004. PubMed DOI PMC
Katsel P.; Li C.; Haroutunian V. Gene Expression Alterations in the Sphingolipid Metabolism Pathways during Progression of Dementia and Alzheimer’s Disease: A Shift toward Ceramide Accumulation at the Earliest Recognizable Stages of Alzheimer’s Disease?. Neurochem. Res. 2007, 32 (4–5), 845–856. 10.1007/s11064-007-9297-x. PubMed DOI
Nemergut M.; Marques S. M.; Uhrik L.; Vanova T.; Nezvedova M.; Gadara D. C.; Jha D.; Tulis J.; Novakova V.; Planas-Iglesias J.; Kunka A.; Legrand A.; Hribkova H.; Pospisilova V.; Sedmik J.; Raska J.; Prokop Z.; Damborsky J.; Bohaciakova D.; Spacil Z.; Hernychova L.; Bednar D.; Marek M. Domino-like Effect of C112R Mutation on ApoE4 Aggregation and Its Reduction by Alzheimer’s Disease Drug Candidate. Mol. Neurodegener 2023, 18 (1), 38.10.1186/s13024-023-00620-9. PubMed DOI PMC
Manzano S.; Agüera L.; Aguilar M.; Olazarán J. A Review on Tramiprosate (Homotaurine) in Alzheimer’s Disease and Other Neurocognitive Disorders. Front Neurol 2020, 11, 614.10.3389/fneur.2020.00614. PubMed DOI PMC