High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes

. 2024 Jan 09 ; 96 (1) : 59-66. [epub] 20231219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38113351

Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.

Zobrazit více v PubMed

Holčapek M.; Liebisch G.; Ekroos K. Lipidomic Analysis. Anal. Chem. 2018, 90 (7), 4249–4257. 10.1021/acs.analchem.7b05395. PubMed DOI

Rustam Y. H.; Reid G. E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90 (1), 374–397. 10.1021/acs.analchem.7b04836. PubMed DOI

Cajka T.; Fiehn O. Comprehensive Analysis of Lipids in Bio-Logical Systems by Liquid Chromatog-Raphy-Mass Spectrometry. Trends Analyt Chem. 2014, 61, 192–206. 10.1016/j.trac.2014.04.017. PubMed DOI PMC

Coman C.; Solari F. A.; Hentschel A.; Sickmann A.; Zahedi R. P.; Ahrends R. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol. Cell. Proteomics 2016, 15 (4), 1435–1466. 10.1074/mcp.M115.053702. PubMed DOI PMC

Wilm M.; Mann M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68 (1), 1–8. 10.1021/ac9509519. PubMed DOI

Zardini Buzatto A.; Kwon B. K.; Li L. Development of a NanoLC-MS Workflow for High-Sensitivity Global Lipidomic Analysis. Anal. Chim. Acta 2020, 1139, 88–99. 10.1016/j.aca.2020.09.001. PubMed DOI

Cattaneo A.; Martano G.; Restuccia U.; Tronci L.; Bianchi M.; Bachi A.; Matafora V. Opti-NQL: An Optimized, Versatile and Sensitive Nano-LC Method for MS-Based Lipidomics Analysis. Metabolites 2021, 11 (11), 720.10.3390/metabo11110720. PubMed DOI PMC

Danne-Rasche N.; Coman C.; Ahrends R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal. Chem. 2018, 90 (13), 8093–8101. 10.1021/acs.analchem.8b01275. PubMed DOI

He Y.; Brademan D. R.; Hutchins P. D.; Overmyer K. A.; Coon J. J. Maximizing MS/MS Acquisition for Lipidomics Using Capillary Separation and Orbitrap Tribrid Mass Spectrometer. Anal. Chem. 2022, 94 (7), 3394–3399. 10.1021/acs.analchem.1c05552. PubMed DOI PMC

Wilson S. R.; Vehus T.; Berg H. S.; Lundanes E. Nano-LC in Proteomics: Recent Advances and Approaches. Bioanalysis 2015, 7 (14), 1799–1815. 10.4155/bio.15.92. PubMed DOI

Bian Y.; The M.; Giansanti P.; Mergner J.; Zheng R.; Wilhelm M.; Boychenko A.; Kuster B. Identification of 7 000–9 000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC-MS/MS. Anal. Chem. 2021, 93 (25), 8687–8692. 10.1021/acs.analchem.1c00738. PubMed DOI

Lenčo J.; Vajrychová M.; Pimková K.; Prokšová M.; Benková M.; Klimentová J.; Tambor V.; Soukup O. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90 (8), 5381–5389. 10.1021/acs.analchem.8b00525. PubMed DOI

Bian Y.; Zheng R.; Bayer F. P.; Wong C.; Chang Y. C.; Meng C.; Zolg D. P.; Reinecke M.; Zecha J.; Wiechmann S.; Heinzlmeir S.; Scherr J.; Hemmer B.; Baynham M.; Gingras A. C.; Boychenko O.; Kuster B. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC-MS/MS. Nat. Commun. 2020, 11 (1), 1–12. 10.1038/s41467-019-13973-x. PubMed DOI PMC

Kuster B.; Bian Y.; Bayer F. P.; Chang Y. C.; Meng C.; Hoefer S.; Deng N.; Zheng R.; Boychenko O. Robust Microflow LC-MS/MS for Proteome Analysis: 38 000 Runs and Counting. Anal. Chem. 2021, 93 (8), 3686–3690. 10.1021/acs.analchem.1c00257. PubMed DOI PMC

Gray N.; Lewis M. R.; Plumb R. S.; Wilson I. D.; Nicholson J. K. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies. J. Proteome Res. 2015, 14 (6), 2714–2721. 10.1021/acs.jproteome.5b00203. PubMed DOI

Gray N.; Adesina-Georgiadis K.; Chekmeneva E.; Plumb R. S.; Wilson I. D.; Nicholson J. K. Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies. Anal. Chem. 2016, 88 (11), 5742–5751. 10.1021/acs.analchem.6b00038. PubMed DOI

Tarazona P.; Feussner K.; Feussner I. An Enhanced Plant Lipidomics Method Based on Multiplexed Liquid Chromatography-Mass Spectrometry Reveals Additional Insights into Cold- and Drought-Induced Membrane Remodeling. Plant Journal 2015, 84 (3), 621–633. 10.1111/tpj.13013. PubMed DOI

Triebl A.; Trötzmüller M.; Hartler J.; Stojakovic T.; Köfeler H. C. Lipidomics by Ultrahigh Performance Liquid Chromatography-High Resolution Mass Spectrometry and Its Application to Complex Biological Samples. Journal of Chromatography B 2017, 1053, 72–80. 10.1016/j.jchromb.2017.03.027. PubMed DOI PMC

Sakallioglu I. T.; Maroli A. S.; Leite A. D. L.; Powers R. A Reversed Phase Ultra-High-Performance Liquid Chromatography-Data Independent Mass Spectrometry Method for the Rapid Identification of Mycobacterial Lipids. J. Chromatogr A 2022, 1662, 462739.10.1016/j.chroma.2021.462739. PubMed DOI PMC

Di Carlo C.; Sousa B. C.; Manfredi M.; Brandi J.; Dalla Pozza E.; Marengo E.; Palmieri M.; Dando I.; Wakelam M. J. O.; Lopez-Clavijo A. F.; Cecconi D. Integrated Lipidomics and Proteomics Reveal Cardiolipin Alterations, Upregulation of HADHA and Long Chain Fatty Acids in Pancreatic Cancer Stem Cells. Sci. Rep 2021, 11 (1), 13297.10.1038/s41598-021-92752-5. PubMed DOI PMC

Lancaster M. A.; Renner M.; Martin C. A.; Wenzel D.; Bicknell L. S.; Hurles M. E.; Homfray T.; Penninger J. M.; Jackson A. P.; Knoblich J. A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501 (7467), 373–379. 10.1038/nature12517. PubMed DOI PMC

Grenier K.; Kao J.; Diamandis P. Three-Dimensional Modeling of Human Neurodegeneration: Brain Organoids Coming of Age. Mol. Psychiatry 2020, 25 (2), 254–274. 10.1038/s41380-019-0500-7. PubMed DOI

Nascimento J. M.; Saia-Cereda V. M.; Sartore R. C.; da Costa R. M.; Schitine C. S.; Freitas H. R.; Murgu M.; de Melo Reis R. A.; Rehen S. K.; Martins-de-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol. 2019, 7, 1–16. 10.3389/fcell.2019.00303. PubMed DOI PMC

Kathuria A.; Lopez-Lengowski K.; Vater M.; McPhie D.; Cohen B. M.; Karmacharya R. Transcriptome Analysis and Functional Characterization of Cerebral Organoids in Bipolar Disorder. Genome Med. 2020, 12 (1), 1–16. 10.1186/s13073-020-00733-6. PubMed DOI PMC

Zhao J.; Fu Y.; Yamazaki Y.; Ren Y.; Davis M. D.; Liu C.-C.; Lu W.; Wang X.; Chen K.; Cherukuri Y.; Jia L.; Martens Y. A.; Job L.; Shue F.; Nguyen T. T.; Younkin S. G.; Graff-Radford N. R.; Wszolek Z. K.; Brafman D. A.; Asmann Y. W.; Ertekin-Taner N.; Kanekiyo T.; Bu G. APOE4 Exacerbates Synapse Loss and Neurodegeneration in Alzheimer’s Disease Patient IPSC-Derived Cerebral Organoids. Nat. Commun. 2020, 11 (1), 5540.10.1038/s41467-020-19264-0. PubMed DOI PMC

Gadara D.; Coufalikova K.; Bosak J.; Smajs D.; Spacil Z. Systematic Feature Filtering in Exploratory Metabolomics: Application toward Biomarker Discovery. Anal. Chem. 2021, 93 (26), 9103–9110. 10.1021/acs.analchem.1c00816. PubMed DOI

Huynh K.; Barlow C. K.; Jayawardana K. S.; Weir J. M.; Mellett N. A.; Cinel M.; Magliano D. J.; Shaw J. E.; Drew B. G.; Meikle P. J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019, 26 (1), 71–84. 10.1016/j.chembiol.2018.10.008. PubMed DOI

Xuan Q.; Hu C.; Yu D.; Wang L.; Zhou Y.; Zhao X.; Li Q.; Hou X.; Xu G. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2018, 90 (12), 7608–7616. 10.1021/acs.analchem.8b01331. PubMed DOI PMC

Miranda A. M.; Bravo F. V.; Chan R. B.; Sousa N.; Di Paolo G.; Oliveira T. G. Differential Lipid Composition and Regulation along the Hippocampal Longitudinal Axis. Transl Psychiatry 2019, 9 (1), 144.10.1038/s41398-019-0478-6. PubMed DOI PMC

Liebisch G.; Fahy E.; Aoki J.; Dennis E. A.; Durand T.; Ejsing C. S.; Fedorova M.; Feussner I.; Griffiths W. J.; Köfeler H.; Merrill A. H.; Murphy R. C.; O’Donnell V. B.; Oskolkova O.; Subramaniam S.; Wakelam M. J. O.; Spener F. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61 (12), 1539–1555. 10.1194/jlr.S120001025. PubMed DOI PMC

Vaňková Z.; Peterka O.; Chocholoušková M.; Wolrab D.; Jirásko R.; Holčapek M. Retention Dependences Support Highly Confident Identification of Lipid Species in Human Plasma by Reversed-Phase UHPLC/MS. Anal Bioanal Chem. 2022, 414 (1), 319–331. 10.1007/s00216-021-03492-4. PubMed DOI

Koivusalo M.; Haimi P.; Heikinheimo L.; Kostiainen R.; Somerharju P. Quantitative Determination of Phospholipid Compositions by Esi-Ms: Effects of Acyl Chain Length, Unsaturation, and Lipid Concentration on Instrument Response. J. Lipid Res. 2001, 42 (4), 663–672. 10.1016/S0022-2275(20)31176-7. PubMed DOI

Cajka T.; Fiehn O. Comprehensive Analysis of Lipids in Biological Systems by Liquid Chromatography-Mass Spectrometry. Trends Anal Chem. 2014, 61, 192–206. 10.1016/j.trac.2014.04.017. PubMed DOI PMC

Schwaiger M.; Schoeny H.; El Abiead Y.; Hermann G.; Rampler E.; Koellensperger G. Merging Metabolomics and Lipidomics into One Analytical Run. Analyst 2019, 144 (1), 220–229. 10.1039/C8AN01219A. PubMed DOI

Li Z.; Zhang Q. Ganglioside Isomer Analysis Using Ion Polarity Switching Liquid Chromatography-Tandem Mass Spectrometry. Anal Bioanal Chem. 2021, 413 (12), 3269.10.1007/s00216-021-03262-2. PubMed DOI PMC

Koch E.; Wiebel M.; Hopmann C.; Kampschulte N.; Schebb N. H. Rapid Quantification of Fatty Acids in Plant Oils and Biological Samples by LC-MS. Anal Bioanal Chem. 2021, 413 (21), 5439–5451. 10.1007/s00216-021-03525-y. PubMed DOI PMC

Cajka T.; Smilowitz J. T.; Fiehn O. Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. Anal. Chem. 2017, 89 (22), 12360–12368. 10.1021/acs.analchem.7b03404. PubMed DOI

Forest A.; Ruiz M.; Bouchard B.; Boucher G.; Gingras O.; Daneault C.; Robillard Frayne I.; Rhainds D.; Tardif J. C.; Rioux J. D.; Des Rosiers C. Comprehensive and Reproducible Untargeted Lipidomic Workflow Using LC-QTOF Validated for Human Plasma Analysis. J. Proteome Res. 2018, 17 (11), 3657–3670. 10.1021/acs.jproteome.8b00270. PubMed DOI PMC

Medina J.; Borreggine R.; Teav T.; Gao L.; Ji S.; Carrard J.; Jones C.; Blomberg N.; Jech M.; Atkins A.; Martins C.; Schmidt-Trucksass A.; Giera M.; Cazenave-Gassiot A.; Gallart-Ayala H.; Ivanisevic J. Omic-Scale High-Throughput Quantitative LC-MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research. Anal. Chem. 2023, 95 (6), 3168–3179. 10.1021/acs.analchem.2c02598. PubMed DOI

Liebisch G.; Binder M.; Schifferer R.; Langmann T.; Schulz B.; Schmitz G. High Throughput Quantification of Cholesterol and Cholesteryl Ester by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS). Biochimica et Biophysica Acta (BBA) 2006, 1761 (1), 121–128. 10.1016/j.bbalip.2005.12.007. PubMed DOI

Sandhoff R.; Brügger B.; Jeckel D.; Lehmann W. D.; Wieland F. T. Determination of Cholesterol at the Low Picomole Level by Nano-Electrospray Ionization Tandem Mass Spectrometry. J. Lipid Res. 1999, 40 (1), 126–132. 10.1016/S0022-2275(20)33347-2. PubMed DOI

Li L.-H.; Dutkiewicz E. P.; Huang Y.-C.; Zhou H.-B.; Hsu C.-C. Analytical Methods for Cholesterol Quantification. J. Food Drug Anal 2019, 27 (2), 375–386. 10.1016/j.jfda.2018.09.001. PubMed DOI PMC

Zhao J.; Lu W.; Ren Y.; Fu Y; Martens Y. A.; Shue F.; Davis M. D.; Wang X.; Chen K.; Li F.; Liu C.-C.; Graff-Radford R.; Wszolek Z. K.; Younkin S. G.; Brafman D. A.; Ertekin-Taner N.; Asmann Y. W.; Dickson D. W.; Xu Z.; Pan M.; Han X.; Kanekiyo T.; Bu G. Apolipoprotein E Regulates Lipid Metabolism and α-Synuclein Pathology in Human IPSC-Derived Cerebral Organoids. Acta Neuropathol 2021, 142, 807–825. 10.1007/s00401-021-02361-9. PubMed DOI PMC

Liu X.; Yang C.; Chen P.; Zhang L.; Cao Y. The Uses of Transcriptomics and Lipidomics Indicated That Direct Contact with Graphene Oxide Altered Lipid Homeostasis through ER Stress in 3D Human Brain Organoids. Sci. Total Environ. 2022, 849, 157815.10.1016/j.scitotenv.2022.157815. PubMed DOI

Liao F.; Yoon H.; Kim J. Apolipoprotein e Metabolism and Functions in Brain and Its Role in Alzheimer’s Disease. Curr. Opin Lipidol 2017, 28 (1), 60–67. 10.1097/MOL.0000000000000383. PubMed DOI PMC

Safieh M.; Korczyn A. D.; Michaelson D. M. ApoE4: An Emerging Therapeutic Target for Alzheimer’s Disease. BMC Medicine 2019 17:1 2019, 17 (1), 1–17. 10.1186/s12916-019-1299-4. PubMed DOI PMC

Sienski G.; Narayan P.; Bonner J. M.; Kory N.; Boland S.; Arczewska A. A.; Ralvenius W. T.; Akay L.; Lockshin E.; He L.; Milo B.; Graziosi A.; Baru V.; Lewis C. A.; Kellis M.; Sabatini D. M.; Tsai L.-H.; Lindquist S. APOE4 Disrupts Intracellular Lipid Homeostasis in Human IPSC-Derived Glia. Sci. Transl Med. 2021, 13 (583), 4564.10.1126/scitranslmed.aaz4564. PubMed DOI PMC

Lin Y. T.; Seo J.; Gao F.; Feldman H. M.; Wen H. L.; Penney J.; Cam H. P.; Gjoneska E.; Raja W. K.; Cheng J.; Rueda R.; Kritskiy O.; Abdurrob F.; Peng Z.; Milo B.; Yu C. J.; Elmsaouri S.; Dey D.; Ko T.; Yankner B. A.; Tsai L. H. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human IPSC-Derived Brain Cell Types. Neuron 2018, 98 (6), 1141–1154. 10.1016/j.neuron.2018.05.008. PubMed DOI PMC

Proitsi P.; Kim M.; Whiley L.; Pritchard M.; Leung R.; Soininen H.; Kloszewska I.; Mecocci P.; Tsolaki M.; Vellas B.; Sham P.; Lovestone S.; Powell J. F.; Dobson R. J. B.; Legido-Quigley C. Plasma Lipidomics Analysis Finds Long Chain Cholesteryl Esters to Be Associated with Alzheimer’s Disease. Transl Psychiatry 2015, 5 (1), e494.10.1038/tp.2014.127. PubMed DOI PMC

Harayama T.; Riezman H. Understanding the Diversity of Membrane Lipid Composition. Nat. Rev. Mol. Cell Biol. 2018, 19 (5), 281–296. 10.1038/nrm.2017.138. PubMed DOI

Yang X.; Sheng W.; Sun G. Y.; Lee J. C. M. Effects of Fatty Acid Unsaturation Numbers on Membrane Fluidity and α-Secretase-Dependent Amyloid Precursor Protein Processing. Neurochem. Int. 2011, 58 (3), 321.10.1016/j.neuint.2010.12.004. PubMed DOI PMC

Katsel P.; Li C.; Haroutunian V. Gene Expression Alterations in the Sphingolipid Metabolism Pathways during Progression of Dementia and Alzheimer’s Disease: A Shift toward Ceramide Accumulation at the Earliest Recognizable Stages of Alzheimer’s Disease?. Neurochem. Res. 2007, 32 (4–5), 845–856. 10.1007/s11064-007-9297-x. PubMed DOI

Nemergut M.; Marques S. M.; Uhrik L.; Vanova T.; Nezvedova M.; Gadara D. C.; Jha D.; Tulis J.; Novakova V.; Planas-Iglesias J.; Kunka A.; Legrand A.; Hribkova H.; Pospisilova V.; Sedmik J.; Raska J.; Prokop Z.; Damborsky J.; Bohaciakova D.; Spacil Z.; Hernychova L.; Bednar D.; Marek M. Domino-like Effect of C112R Mutation on ApoE4 Aggregation and Its Reduction by Alzheimer’s Disease Drug Candidate. Mol. Neurodegener 2023, 18 (1), 38.10.1186/s13024-023-00620-9. PubMed DOI PMC

Manzano S.; Agüera L.; Aguilar M.; Olazarán J. A Review on Tramiprosate (Homotaurine) in Alzheimer’s Disease and Other Neurocognitive Disorders. Front Neurol 2020, 11, 614.10.3389/fneur.2020.00614. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...