The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI-Dynamic Contrast-Enhanced challenge
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 CA248192
NCI NIH HHS - United States
2282622
EPSRC-CASE
Bracco Diagnostics
PubMed
38115695
DOI
10.1002/mrm.29909
Knihovny.cz E-resources
- Keywords
- DCE-MRI, challenge, data analysis, glioblastoma, open-science, perfusion,
- MeSH
- Algorithms MeSH
- Contrast Media * MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Reproducibility of Results MeSH
- Software MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Contrast Media * MeSH
PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.
Advanced Imaging Research Center Oregon Health and Science Institute Portland Oregon USA
Athinoula A Martinos Center for Biomedical Imaging Harvard Medical School Boston Massachusetts USA
Cancer Center Amsterdam Imaging and Biomarkers Amsterdam The Netherlands
Center for Biomedical Engineering Indian Institute of Technology Delhi New Delhi India
Clinical Imaging Group Genentech Inc South San Francisco California USA
Corewell Health William Beaumont University Hospital Royal Oak Michigan USA
Czech Academy of Sciences Institute of Information Theory and Automation Praha Czech Republic
Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Department of Biomedicine and Prevention University of Rome Tor Vergata Italy
Department of Computer Science University College London London UK
Department of Diagnostic Medicine University of Texas Austin Texas USA
Department of Imaging Physics MD Anderson Cancer Center Houston Texas USA
Department of Infection Immunity and Cardiovascular Disease University of Sheffield Sheffield UK
Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
Department of Neurosurgery Perelman School of Medicine University of Pennsylvania Pennsylvania USA
Department of Radiological Sciences University of California Los Angeles California USA
Department of Radiology and Nuclear Medicine University of Amsterdam Amsterdam The Netherlands
Department of Radiology Grossman School of Medicine New York University New York New York USA
Department of Radiology Medical College of Wisconsin Milwaukee Wisconsin USA
Department of Radiology Memorial Sloan Kettering Cancer Center New York New York USA
Department of Radiology Neuroradiology Division Mayo Clinic Scottsdale Arizona USA
Department of Radiology The Christie Hospital NHS Trust Manchester UK
Department of Radiology University of Alabama Birmingham Alabama USA
Department of Radiology University of Washington Seattle Washington USA
Department of Radiology University of Wisconsin Madison Madison Wisconsin USA
Department of Radiology Weill Cornell Medical College New York New York USA
Department of Surgery and Cancer Imperial College London UK
Department of Translational Neuroscience Barrow Neurological Institute Phoenix Arizona USA
Division of Cancer Sciences University of Manchester Manchester UK
Division of Radiotherapy and Imaging The Institute of Cancer Research London UK
Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany
Institute of Bioengineering and Bioimaging Singapore Singapore
Institute of Psychiatry Psychology and Neuroscience King's College London UK
Neuroradiology Division Department of Radiology Mayo Clinic Phoenix Arizona USA
Oden Institute for Computational Engineering and Sciences The University of Texas Austin Texas USA
School of Physics and Astronomy University of Leeds Leeds UK
See more in PubMed
Bell L, Ragunathan S, Kazerooni F. Contrast agent-based perfusion MRI methods. In: Choi IY, Jezzard P, eds. Advanced Neuro MR Techniques and Applications. Vol 4. Academic Press; 2021:195-209. doi:10.1016/B978-0-12-822479-3.00024-5
Zhang N, Zhang L, Qiu B, Meng L, Wang X, Hou B. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging. 2012;36:355-363. doi:10.1002/jmri.23675
Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;121:373-380. doi:10.1007/s11060-014-1644-6
Thomas A, Arevalo-Perez J, Kaley T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol. 2015;125:183-190. doi:10.1007/s11060-015-1893-z
Zhu X, Li K, Jackson A. Dynamic contrast-enhanced MRI in cerebral tumours. In: Alan J, Buckley DL, Parker GJ, eds. Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Springer; 2005:117-143. doi:10.1007/3-540-26420-5_9
O'Connor J, Jackson A, Parker G, Jayson G. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96:189-195. doi:10.1038/sj.bjc.6603515
QIBA MR Biomarker Committee. MR DCE-MRI Quantification (DCEMRI-Q), Quantitative Imaging Biomarkers Alliance. Profile Stage: Public Comment. http://qibawiki.rsna.org/index.php/Profiles (accessed June 2022)
Shukla-Dave A, Obuchowski NA, Chenevert TL, et al. Quantitative Imaging Biomarkers Alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019;49:e101-e121. doi:10.1002/jmri.26518
Lindquist M. Neuroimaging results altered by varying analysis pipelines. Nature. 2020;582:36-37. doi:10.1038/d41586-020-01282-z
Stikov N, Trzasko J, Bernstein M. Reproducibility and the future of MRI research. Magn Reson Med. 2019;82:1981-1983. doi:10.1002/mrm.27939
Simmons J, Nelson L, Simonsohn U. False-positive psychology. Psychol Sci. 2011;22:1359-1366. doi:10.1177/0956797611417632
Wicherts J, Veldkamp C, Augusteijn H, Bakker M, van Aert R, van Assen M. Degrees of freedom in planning, running, analyzing, and reporting psychological studies: a checklist to avoid p-hacking. Front Psychol. 2016;7:1832. doi:10.3389/fpsyg.2016.01832
OSIPI TF 1.2. Public Version of OSIPI_DSCDCEinventory: DSC+DCE Software. https://docs.google.com/spreadsheets/d/e/2PACX-1vSOHrNIiWcwDD5BoHij1dpXKgEejtohqKF6KZQMZi3G6GzM_BP8xpuwRbjFFvDW9Q/pubhtml?gid=1031101549&single=true (accessed June 2023).
Carp J. The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage. 2012;63:289-300. doi:10.1016/j.neuroimage.2012.07.004
Kazerooni A, Bell L, Van den Abeele F, et al. The open source initiative for perfusion imaging (OSIPI): DCE-MRI challenge. In: Proceedings of the 10th Annual Meeting of ISMRM. 2021:1094.
Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045-1057. doi:10.1007/s10278-013-9622-7
Barboriak D. Data From RIDER NEURO MRI. Cancer Imag Arch. 2015. https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1
Kazerooni A, Shalom E, Ahmed Z, et al. OSIPI DCE Challenge. Accessed August 2023. https://osf.io/u7a6f/
Murase K. Efficient method for calculating kinetic parameters usingT1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med. 2004;51:858-862. doi:10.1002/mrm.20022
Brix G, Kiessling F, Lucht R, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52:420-429. doi:10.1002/mrm.20161
Parker G, Roberts C, Macdonald A, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56:993-1000. doi:10.1002/mrm.21066
Pintaske J, Martirosian P, Graf H, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol. 2006;41:213-221. doi:10.1097/01.rli.0000197668.44926.f7
Siemonsen S, Finsterbusch J, Matschke J, Lorenzen A, Ding X, Fiehler J. Age-dependent normal values of T2* and T2′ in brain parenchyma. Am J Neuroradiol. 2008;29:950-955. doi:10.3174/ajnr.A0951
Zhang X, Petersen ET, Ghariq E, et al. In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med. 2013;70:1082-1086. doi:10.1002/mrm.24550
Yushkevich P, Gao Y, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Proceedings of the 38th annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; 2016:3342-3345. doi:10.1109/EMBC.2016.7591443
Brett M, Markiewicz C, Hanke M, et al. nipy/nibabel: 3.2.1. 2020. Accessed March 2023. https://zenodo.org/records/4295521
Harris C, Millman K, van der Walt S, et al. Array programming with NumPy. Nature. 2020;585:357-362. doi:10.1038/s41586-020-2649-2
Matejka J, Fitzmaurice G. Same stats, different graphs. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM; 2017:1290-1294. doi:10.1145/3025453.3025912
Obuchowski N, Bullen J. Quantitative imaging biomarkers: effect of sample size and bias on confidence interval coverage. Stat Methods Med Res. 2018;27:3139-3150. doi:10.1177/0962280217693662
Obuchowski NA, Huang E, de Souza NM, et al. A framework for evaluating the technical performance of multiparameter quantitative imaging biomarkers (mp-QIBs). Acad Radiol. 2023;30:147-158. doi:10.1016/j.acra.2022.08.031
Ottens T, Barbieri S, Orton MR, et al. Deep learning DCE-MRI parameter estimation: application in pancreatic cancer. Med Image Anal. 2022;80:102512. doi:10.1016/j.media.2022.102512
Gurney-Champion OJ, Ottens T. DCE-NET, GitHu. https://github.com/oliverchampion/DCENET (accessed July 2022)
Berks M, Parker G, Little R, Cheung S. Madym: a C++ toolkit for quantitative DCE-MRI analysis. J Open Source Softw. 2021;6:3523. doi:10.21105/joss.03523
Berks M. madym_cxx. GitLab. https://gitlab.com/manchester_qbi/manchester_qbi_public/osipi-dce-challenge (accessed July 2022)
Jiřík R. PerfLab. CERIT Scientific Cloud. http://perflab.cerit-sc.cz/ (accessed July 14, 2022).
Jiřík R, Taxt T, Macíček O, et al. Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Magn Reson Imaging. 2019;62:46-56. doi:10.1016/j.mri.2019.05.024
Jiřík R, Bartoš M, Macíček O, Starčuk Z. Arterial input function estimation using all-channel blind deconvolution with spatial regularization in DCE-MRI. In: Proceedings of the 31st Annual Meeting of ISMRM. London, UK 2022 p. 1582.
Mikheev A, Rusinek H. FireVoxel. https://firevoxel.org/ (accessed July 2022).
Barnes SR, Ng TSC, Santa-Maria N, Montagne A, Zlokovic BV, Jacobs RE. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med Imaging. 2015;15:19. doi:10.1186/s12880-015-0062-3
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671-675. doi:10.1038/nmeth.2089
Singh A, Rathore RKS, Haris M, Verma SK, Husain N, Gupta RK. Improved bolus arrival time and arterial input function estimation for tracer kinetic analysis in DCE-MRI. J Magn Reson Imaging. 2009;29:166-176. doi:10.1002/jmri.21624
Rata M, Collins DJ, Darcy J, et al. Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions. Eur Radiol. 2016;26:1991-1998. doi:10.1007/s00330-015-4012-9
Port RE, Knopp MV, Brix G. Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn Reson Med. 2001;45:1030-1038. doi:10.1002/mrm.1137
Larsson H, Courivaud F, Rostrup E, Hansen A. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T1 weighted MRI at 3 Tesla. Magn Reson Med. 2009;62:1270-1281. doi:10.1002/mrm.22136
Taheri S, Gasparovic C, Huisa B, et al. Blood-brain barrier permeability abnormalities in vascular cognitive impairment. Stroke. 2011;42:2158-2163. doi:10.1161/STROKEAHA.110.611731
Cramer S, Simonsen H, Frederiksen J, Rostrup E, Larsson H. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. NeuroImage Clin. 2014;4:182-189. doi:10.1016/j.nicl.2013.12.001
Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal T. Good enough practices in scientific computing. PLoS Comput Biol. 2017;13:e1005510. doi:10.1371/journal.pcbi.1005510
Wilson G, Aruliah D, Brown C, et al. Best practices for scientific computing. PLoS Biol. 2014;12:e1001745. doi:10.1371/journal.pbio.1001745
van Houdt PJ, Ragunathan S, Berk M, et al. Open Science initiative for perfusion imaging (OSIPI): a community-led, open-source code library for analysis of DCE/DSC-MRI. In: Proceedings of the 31st Annual Meeting of ISMRM. London, UK 2022 p. 2691.
Hanson E, Sandmann C, Malyshev A, Lundervold A, Modersitzki J, Hodneland E. Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements. PloS One. 2018;13:e0200521. doi:10.1371/journal.pone.0200521
Blockley NP, Jiang L, Gardener AG, Ludman CN, Francis ST, Gowland PA. Field strength dependence of R1 and R 2* relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin. Magn Reson Med. 2008;60:1313-1320. doi:10.1002/mrm.21792
Cheng HLM. Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2008;28:736-743. doi:10.1002/jmri.21489
O'Connor JPB, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169-186. doi:10.1038/nrclinonc.2016.162
OSIPI, Shalom E, Kazerooni AF. TF6.2_DCE-DSC-MRI_Challenges. GitHub. https://github.com/OSIPI/TF6.2_DCE-DSC-MRI_Challenges (accessed June 2022).