Molecular Genetic Aspects of Sporadic Multiglandular Primary Hyperparathyroidism
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
38116772
PubMed Central
PMC10830163
DOI
10.33549/physiolres.935253
PII: 935253
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- molekulární biologie MeSH
- parathormon genetika MeSH
- paratyreoidea patologie MeSH
- primární hyperparatyreóza * diagnóza genetika patologie MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- parathormon MeSH
Multiglandular primary hyperparathyroidism (MGD) represents a rare form of primary hyperparathyroidism (PHPT). MGD is associated with hereditary PHPT, but the sporadic MGD is more common and affects a similar patient profile as single gland parathyroid disease (SGD). The distinction between SGD and MGD is of great clinical importance, especially for the strategy of parathyroidectomy. Based on the limited knowledge available, MGD is likely to be a genetically heterogeneous disease resulting from the interaction of germline and somatic DNA mutations together with epigenetic alterations. Furthermore, these events may combine and occur independently in parathyroid tumors within the same individual with MGD. Gene expression profiling has shown that SGD and MGD may represent distinct entities in parathyroid tumorigenesis. We are waiting for studies to analyze exactly which genes are different in SGD and MGD in order to identify potential biomarkers that can distinguish between the two forms of the disease.
Zobrazit více v PubMed
Bilezikian JP, Khan AA, Silverberg SJ, Fuleihan GE, Marcocci C, Minisola S, Perrier N, Sitges-Serra A, Thakker RV, Guyatt G, Mannstadt M, Potts JT, Clarke BL, Brandi ML International Workshop on Primary H. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J Bone Miner Res. 2022;37:2293–2314. https://doi.org/10.1002/jbmr.4677, https://doi.org/10.1002/jbmr.4670. PubMed DOI
Griebeler ML, Kearns AE, Ryu E, Hathcock MA, Melton LJ, 3rd, Wermers RA. Secular trends in the incidence of primary hyperparathyroidism over five decades (1965–2010) Bone. 2015;73:1–7. doi: 10.1016/j.bone.2014.12.003. PubMed DOI PMC
Haglund F, Ma R, Huss M, Sulaiman L, Lu M, Nilsson IL, Hoog A, Juhlin CC, Hartman J, Larsson C. Evidence of a functional estrogen receptor in parathyroid adenomas. J Clin Endocrinol Metab. 2012;97:4631–4639. doi: 10.1210/jc.2012-2484. PubMed DOI
Barczynski M, Branstrom R, Dionigi G, Mihai R. Sporadic multiple parathyroid gland disease--a consensus report of the European Society of Endocrine Surgeons (ESES) Langenbecks Arch Surg. 2015;400:887–905. doi: 10.1007/s00423-015-1348-1. PubMed DOI PMC
Park HS, Lee YH, Hong N, Won D, Rhee Y. Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing. Front Endocrinol (Lausanne) 2022;13:853171. doi: 10.3389/fendo.2022.853171. PubMed DOI PMC
Erickson LA, Mete O, Juhlin CC, Perren A, Gill AJ. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr Pathol. 2022;33:64–89. doi: 10.1007/s12022-022-09709-1. PubMed DOI
Brewer K, Costa-Guda J, Arnold A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr Relat Cancer. 2019;26:R53–R72. doi: 10.1530/ERC-18-0304. PubMed DOI
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev. 2023;44:779–818. doi: 10.1210/endrev/bnad009. PubMed DOI PMC
Shi Y, Azimzadeh P, Jamingal S, Wentworth S, Ferlitch J, Koh J, Balenga N, Olson JA., Jr Polyclonal origin of parathyroid tumors is common and is associated with multiple gland disease in primary hyperparathyroidism. Surgery. 2018;163:9–14. doi: 10.1016/j.surg.2017.04.038. PubMed DOI PMC
Alvelos MI, Vinagre J, Fonseca E, Barbosa E, Teixeira-Gomes J, Sobrinho-Simoes M, Soares P. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur J Endocrinol. 2013;168:119–128. doi: 10.1530/EJE-12-0327. PubMed DOI
Cromer MK, Starker LF, Choi M, Udelsman R, Nelson-Williams C, Lifton RP, Carling T. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J Clin Endocrinol Metab. 2012;97:E1774–1781. doi: 10.1210/jc.2012-1743. PubMed DOI PMC
Libutti SK, Crabtree JS, Lorang D, Burns AL, Mazzanti C, Hewitt SM, O’Connor S, Ward JM, Emmert-Buck MR, Remaley A, Miller M, Turner E, Alexander HR, Arnold A, Marx SJ, Collins FS, Spiegel AM. Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res . 2003;63:8022–8028. PubMed
Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, Merchant JL, Hua X, Lei M. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature. 2012;482:542–546. doi: 10.1038/nature10806. PubMed DOI PMC
Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123:207–218. doi: 10.1016/j.cell.2005.09.025. PubMed DOI
Arnold A, Kim HG, Gaz RD, Eddy RL, Fukushima Y, Byers MG, Shows TB, Kronenberg HM. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989;83:2034–2040. doi: 10.1172/JCI114114. PubMed DOI PMC
Hsi ED, Zukerberg LR, Yang WI, Arnold A. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab. 1996;81:1736–1739. https://doi.org/10.1210/jcem.81.5.8626826, https://doi.org/10.1210/jc.81.5.1736. PubMed DOI
Pandya C, Uzilov AV, Bellizzi J, Lau CY, Moe AS, Strahl M, Hamou W, Newman LC, Fink MY, Antipin Y, Yu W, Stevenson M, Cavaco BM, Teh BT, Thakker RV, Morreau H, Schadt EE, Sebra R, Li SD, Arnold A, Chen R. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight. 2017;2:e92061. doi: 10.1172/jci.insight.92061. PubMed DOI PMC
Marini F, Giusti F, Iantomasi T, Brandi ML. Parathyroid Tumors: Molecular Signatures. Int J Mol Sci. 2021:22. doi: 10.3390/ijms222011206. PubMed DOI PMC
Costa-Guda J, Soong CP, Parekh VI, Agarwal SK, Arnold A. Germline and somatic mutations in cyclin-dependent kinase inhibitor genes CDKN1A, CDKN2B, and CDKN2C in sporadic parathyroid adenomas. Horm Cancer. 2013;4:301–307. doi: 10.1007/s12672-013-0147-9. PubMed DOI PMC
Alevizaki M, Stratakis CA. Multiple endocrine neoplasias: advances and challenges for the future. J Intern Med. 2009;266:1–4. doi: 10.1111/j.1365-2796.2009.02108.x. PubMed DOI PMC
Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci U S A. 2005;102:14659–14664. doi: 10.1073/pnas.0503484102. PubMed DOI PMC
Borsari S, Pardi E, Pellegata NS, Lee M, Saponaro F, Torregrossa L, Basolo F, Paltrinieri E, Zatelli MC, Materazzi G, Miccoli P, Marcocci C, Cetani F. Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas. Endocrine. 2017;55:386–397. doi: 10.1007/s12020-016-0941-6. PubMed DOI
Pappa V, Papageorgiou S, Papageorgiou E, Panani A, Boutou E, Tsirigotis P, Dervenoulas J, Economopoulos T, Raptis S. A novel p27 gene mutation in a case of unclassified myeloproliferative disorder. Leuk Res. 2005;29:229–231. doi: 10.1016/j.leukres.2004.06.007. PubMed DOI
Starker LF, Svedlund J, Udelsman R, Dralle H, Akerstrom G, Westin G, Lifton RP, Bjorklund P, Carling T. The DNA methylome of benign and malignant parathyroid tumors. Genes Chromosomes Cancer. 2011;50:735–745. doi: 10.1002/gcc.20895. PubMed DOI PMC
Corbetta S, Mantovani G, Lania A, Borgato S, Vicentini L, Beretta E, Faglia G, Di Blasio AM, Spada A. Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin Endocrinol (Oxf) 2000;52:339–348. doi: 10.1046/j.1365-2265.2000.00933.x. PubMed DOI
Singh P, Bhadada SK, Dahiya D, Arya AK, Saikia UN, Sachdeva N, Kaur J, Brandi ML, Rao SD. Reduced calcium sensing receptor (CaSR) expression is epigenetically deregulated in parathyroid adenomas. J Clin Endocrinol Metab. 2020;105:3015–3024. doi: 10.1210/clinem/dgaa419. PubMed DOI PMC
Balenga N, Azimzadeh P, Hogue JA, Staats PN, Shi Y, Koh J, Dressman H, Olson JA., Jr Orphan Adhesion GPCR GPR64/ADGRG2 is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J Bone Miner Res. 2017;32:654–666. doi: 10.1002/jbmr.3023. PubMed DOI PMC
Guan B, Welch JM, Sapp JC, Ling H, Li Y, Johnston JJ, Kebebew E, Biesecker LG, Simonds WF, Marx SJ, Agarwal SK. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism. Am J Hum Genet. 2016;99:1034–1044. doi: 10.1016/j.ajhg.2016.08.018. PubMed DOI PMC
El Lakis M, Nockel P, Guan B, Agarwal S, Welch J, Simonds WF, Marx S, Li Y, Nilubol N, Patel D, Yang L, Merkel R, Kebebew E. Familial isolated primary hyperparathyroidism associated with germline GCM2 mutations is more aggressive and has a lesser rate of biochemical cure. Surgery. 2018;163:31–34. doi: 10.1016/j.surg.2017.04.027. PubMed DOI PMC
Vincze S, Peters NV, Kuo CL, Brown TC, Korah R, Murtha TD, Bellizzi J, Riccardi A, Parham K, Carling T, Costa-Guda J, Arnold A. GCM2 Variants in Familial and Multiglandular Primary Hyperparathyroidism. J Clin Endocrinol Metab. 2022;107:e2021–e2026. doi: 10.1210/clinem/dgab929. PubMed DOI
Canaff L, Guarnieri V, Kim Y, Wong BYL, Nolin-Lapalme A, Cole DEC, Minisola S, Eller-Vainicher C, Cetani F, Repaci A, Turchetti D, Corbetta S, Scillitani A, Goltzman D. Novel Glial Cells Missing-2 (GCM2) variants in parathyroid disorders. Eur J Endocrinol. 2022;186:351–366. doi: 10.1530/EJE-21-0433. PubMed DOI PMC
Mannstadt M, Holick E, Zhao W, Juppner H. Mutational analysis of GCMB, a parathyroid-specific transcription factor, in parathyroid adenoma of primary hyperparathyroidism. J Endocrinol. 2011;210:165–171. doi: 10.1530/JOE-10-0247. PubMed DOI PMC
Ryhanen EM, Leijon H, Metso S, Eloranta E, Korsoff P, Ahtiainen P, Kekalainen P, Tamminen M, Ristamaki R, Knutar O, Loyttyniemi E, Niskanen L, Vaisanen M, Heiskanen I, Valimaki MJ, Laakso M, Haglund C, Arola J, Schalin-Jantti C. A nationwide study on parathyroid carcinoma. Acta Oncol. 2017;56:991–1003. doi: 10.1080/0284186X.2017.1306103. PubMed DOI
Tao X, Xu T, Lin X, Xu S, Fan Y, Guo B, Deng X, Jiao Q, Chen L, Wei Z, Chen C, Yang W, Zhang Z, Yu X, Yue H. Genomic Profiling Reveals the Variant Landscape of Sporadic Parathyroid Adenomas in Chinese Population. J Clin Endocrinol Metab. 2023;108:1768–1775. doi: 10.1210/clinem/dgad002. PubMed DOI PMC
Soto-Pedre E, Newey PJ, Srinivasan S, Siddiqui MK, Palmer CNA, Leese GP. Identification of 4 New Loci Associated With Primary Hyperparathyroidism (PHPT) and a Polygenic Risk Score for PHPT. J Clin Endocrinol Metab. 2022;107:3302–3308. doi: 10.1210/clinem/dgac527. PubMed DOI PMC
Dwight T, Nelson AE, Theodosopoulos G, Richardson AL, Learoyd DL, Philips J, Delbridge L, Zedenius J, Teh BT, Larsson C, Marsh DJ, Robinson BG. Independent genetic events associated with the development of multiple parathyroid tumors in patients with primary hyperparathyroidism. Am J Pathol. 2002;161:1299–1306. doi: 10.1016/S0002-9440(10)64406-9. PubMed DOI PMC
Morrison C, Farrar W, Kneile J, Williams N, Liu-Stratton Y, Bakaletz A, Aldred MA, Eng C. Molecular classification of parathyroid neoplasia by gene expression profiling. Am J Pathol. 2004;165:565–576. doi: 10.1016/S0002-9440(10)63321-4. PubMed DOI PMC
Velazquez-Fernandez D, Laurell C, Saqui-Salces M, Pantoja JP, Candanedo-Gonzalez F, Reza-Albarran A, Gamboa-Dominguez A, Herrera MF. Differential RNA expression profile by cDNA microarray in sporadic primary hyperparathyroidism (pHPT): primary parathyroid hyperplasia versus adenoma. World J Surg. 2006;30:705–713. doi: 10.1007/s00268-005-0708-3. PubMed DOI
Sulaiman L, Juhlin CC, Nilsson IL, Fotouhi O, Larsson C, Hashemi J. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics. 2013;8:646–655. doi: 10.4161/epi.24823. PubMed DOI PMC
Juhlin CC, Kiss NB, Villablanca A, Haglund F, Nordenstrom J, Hoog A, Larsson C. Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS One. 2010;5:e9472. doi: 10.1371/journal.pone.0009472. PubMed DOI PMC
Conemans EB, Lodewijk L, Moelans CB, Offerhaus GJA, Pieterman CRC, Morsink FH, Dekkers OM, de Herder WW, Hermus AR, van der Horst-Schrivers AN, Drent ML, Bisschop PH, Havekes B, Brosens LAA, Dreijerink KMA, Borel Rinkes IHM, Timmers HTM, Valk GD, Vriens MR. DNA methylation profiling in MEN1-related pancreatic neuroendocrine tumors reveals a potential epigenetic target for treatment. Eur J Endocrinol. 2018;179:153–160. doi: 10.1530/EJE-18-0195. PubMed DOI
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473. doi: 10.1038/onc.2016.304. PubMed DOI PMC
Singh P, Bhadada SK, Arya AK, Saikia UN, Sachdeva N, Dahiya D, Kaur J, Brandi ML, Rao SD. Aberrant Epigenetic Alteration of PAX1 Expression Contributes to Parathyroid Tumorigenesis. J Clin Endocrinol Metab. 2022;107:e783–e792. doi: 10.1210/clinem/dgab626. PubMed DOI PMC
Verdelli C, Forno I, Vaira V, Corbetta S. MicroRNA deregulation in parathyroid tumours suggests an embryonic signature. J Endocrinol Invest. 2015;38:383–388. doi: 10.1007/s40618-014-0234-y. PubMed DOI
Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S, Vicentini L, Chiodini I, Bisceglia M, Beck-Peccoz P, Bosari S, Spada A. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17:135–146. doi: 10.1677/ERC-09-0134. PubMed DOI
Mizamtsidi M, Nastos K, Palazzo F, Constantinides V, Dina R, Farenden M, Mastorakos G, Vassiliou I, Gazouli M. Association Between hsa-miR-30e Polymorphisms and Sporadic Primary Hyperparathyroidism Risk. In Vivo. 2019;33:1263–1269. doi: 10.21873/invivo.11598. PubMed DOI PMC