The Ameliorating Effects of n-3 Polyunsaturated Fatty Acids on Liver Steatosis Induced by a High-Fat Methionine Choline-Deficient Diet in Mice
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MH CZ-DRO-VFN64165
Ministry of Health of the Czech Republic
AZV-MHCR-NU23-01-00288
Ministry of Health of the Czech Republic
Cooperatio Program (research area DIAG)
Charles University
NPO EXCELES CarDia LX22NPO5104
Czech Ministry of Education
PubMed
38139055
PubMed Central
PMC10743075
DOI
10.3390/ijms242417226
PII: ijms242417226
Knihovny.cz E-resources
- Keywords
- lipidome, lipids, n-3 fatty acids, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis,
- MeSH
- Cholesterol metabolism MeSH
- Choline metabolism MeSH
- Diet, High-Fat adverse effects MeSH
- Liver metabolism MeSH
- Fatty Acids, Nonesterified metabolism MeSH
- Methionine metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Non-alcoholic Fatty Liver Disease * etiology genetics MeSH
- Fatty Acids, Unsaturated metabolism MeSH
- Fatty Acids, Omega-3 * pharmacology therapeutic use metabolism MeSH
- Racemethionine metabolism pharmacology MeSH
- Triglycerides metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholesterol MeSH
- Choline MeSH
- Fatty Acids, Nonesterified MeSH
- Methionine MeSH
- Fatty Acids, Unsaturated MeSH
- Fatty Acids, Omega-3 * MeSH
- Racemethionine MeSH
- Triglycerides MeSH
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
See more in PubMed
Marra F., Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 2018;68:280–295. doi: 10.1016/j.jhep.2017.11.014. PubMed DOI
Allard J.P., Aghdassi E., Mohammed S., Raman M., Avand G., Arendt B.M., Jalali P., Kandasamy T., Prayitno N., Sherman M., et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): A cross-sectional study. J. Hepatol. 2008;48:300–307. doi: 10.1016/j.jhep.2007.09.009. PubMed DOI
Araya J., Rodrigo R., Videla L.A., Thielemann L., Orellana M., Pettinelli P., Poniachik J. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004;106:635–643. doi: 10.1042/CS20030326. PubMed DOI
Gentile C.L., Pagliassotti M.J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2008;19:567–576. doi: 10.1016/j.jnutbio.2007.10.001. PubMed DOI PMC
Day C.P., James O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2. PubMed DOI
Wanless I.R., Lentz J.S. Fatty liver hepatitis (steatohepatitis) and obesity: An autopsy study with analysis of risk factors. Hepatology. 1990;12:1106–1110. doi: 10.1002/hep.1840120505. PubMed DOI
Koek G.H., Liedorp P.R., Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin. Chim. Acta. 2011;412:1297–1305. doi: 10.1016/j.cca.2011.04.013. PubMed DOI
Ibrahim S.H., Gores G.J. Who pulls the trigger: JNK activation in liver lipotoxicity? J. Hepatol. 2012;56:17–19. doi: 10.1016/j.jhep.2011.04.017. PubMed DOI PMC
Musso G., Gambino R., De Michieli F., Cassader M., Rizzetto M., Durazzo M., Faga E., Silli B., Pagano G. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37:909–916. doi: 10.1053/jhep.2003.50132. PubMed DOI
Videla L.A., Hernandez-Rodas M.C., Metherel A.H., Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot. Essent. Fatty Acids. 2022;181:102441. doi: 10.1016/j.plefa.2022.102441. PubMed DOI
Malinska H., Oliyarnyk O., Hubova M., Zidek V., Landa V., Simakova M., Mlejnek P., Kazdova L., Kurtz T.W., Pravenec M. Increased liver oxidative stress and altered PUFA metabolism precede development of non-alcoholic steatohepatitis in SREBP-1a transgenic spontaneously hypertensive rats with genetic predisposition to hepatic steatosis. Mol. Cell. Biochem. 2010;335:119–125. doi: 10.1007/s11010-009-0248-5. PubMed DOI
Xin Y.N., Xuan S.Y., Zhang J.H., Zheng M.H., Guan H.S. Omega-3 polyunsaturated fatty acids: A specific liver drug for non-alcoholic fatty liver disease (NAFLD) Med. Hypotheses. 2008;71:820–821. doi: 10.1016/j.mehy.2008.07.008. PubMed DOI
Di Minno M.N., Russolillo A., Lupoli R., Ambrosino P., Di Minno A., Tarantino G. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World J. Gastroenterol. 2012;18:5839–5847. doi: 10.3748/wjg.v18.i41.5839. PubMed DOI PMC
Sekiya M., Yahagi N., Matsuzaka T., Najima Y., Nakakuki M., Nagai R., Ishibashi S., Osuga J., Yamada N., Shimano H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology. 2003;38:1529–1539. doi: 10.1016/j.hep.2003.09.028. PubMed DOI
Kuda O., Jelenik T., Jilkova Z., Flachs P., Rossmeisl M., Hensler M., Kazdova L., Ogston N., Baranowski M., Gorski J., et al. n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia. 2009;52:941–951. doi: 10.1007/s00125-009-1305-z. PubMed DOI
EFSA Assesses Safety of Long-Chain Omega-3 Fatty Acids. [(accessed on 27 July 2012)]. Available online: https://www.efsa.europa.eu/en/press/news/120727.
El-Badry A.M., Graf R., Clavien P.A. Omega 3-Omega 6: What is right for the liver? J. Hepatol. 2007;47:718–725. doi: 10.1016/j.jhep.2007.08.005. PubMed DOI
Jump D.B., Lytle K.A., Depner C.M., Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther. 2018;181:108–125. doi: 10.1016/j.pharmthera.2017.07.007. PubMed DOI PMC
Khadge S., Sharp J.G., Thiele G.M., McGuire T.R., Klassen L.W., Duryee M.J., Britton H.C., Dafferner A.J., Beck J., Black P.N., et al. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. J. Nutr. Biochem. 2018;52:92–102. doi: 10.1016/j.jnutbio.2017.09.017. PubMed DOI PMC
Kang J.X. Balance of omega-6/omega-3 essential fatty acids is important for health. The evidence from gene transfer studies. World Rev. Nutr. Diet. 2005;95:93–102. PubMed
Salehi-Sahlabadi A., Sadat S., Beigrezaei S., Pourmasomi M., Feizi A., Ghiasvand R., Hadi A., Clark C.C.T., Miraghajani M. Dietary patterns and risk of non-alcoholic fatty liver disease. BMC Gastroenterol. 2021;21:41. doi: 10.1186/s12876-021-01612-z. PubMed DOI PMC
Rossmeisl M., Jilkova Z.M., Kuda O., Jelenik T., Medrikova D., Stankova B., Kristinsson B., Haraldsson G.G., Svensen H., Stoknes I., et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: Possible role of endocannabinoids. PLoS ONE. 2012;7:e38834. doi: 10.1371/journal.pone.0038834. PubMed DOI PMC
Roche H.M., Gibney M.J. Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism. Am. J. Clin. Nutr. 2000;71:232S–237S. doi: 10.1093/ajcn/71.1.232S. PubMed DOI
Itariu B.K., Zeyda M., Hochbrugger E.E., Neuhofer A., Prager G., Schindler K., Bohdjalian A., Mascher D., Vangala S., Schranz M., et al. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: A randomized controlled trial. Am. J. Clin. Nutr. 2012;96:1137–1149. doi: 10.3945/ajcn.112.037432. PubMed DOI
Nettleton J.A., Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: A review. J. Am. Diet. Assoc. 2005;105:428–440. doi: 10.1016/j.jada.2004.11.029. PubMed DOI
Flachs P., Rossmeisl M., Bryhn M., Kopecky J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin. Sci. 2009;116:1–16. doi: 10.1042/CS20070456. PubMed DOI
Flachs P., Mohamed-Ali V., Horakova O., Rossmeisl M., Hosseinzadeh-Attar M.J., Hensler M., Ruzickova J., Kopecky J. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia. 2006;49:394–397. doi: 10.1007/s00125-005-0053-y. PubMed DOI
Sanderson L.M., de Groot P.J., Hooiveld G.J., Koppen A., Kalkhoven E., Muller M., Kersten S. Effect of synthetic dietary triglycerides: A novel research paradigm for nutrigenomics. PLoS ONE. 2008;3:e1681. doi: 10.1371/journal.pone.0001681. PubMed DOI PMC
Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Martinez-Arranz I., Bruzzone C., Noureddin M., Gil-Redondo R., Minchole I., Bizkarguenaga M., Arretxe E., Iruarrizaga-Lejarreta M., Fernandez-Ramos D., Lopitz-Otsoa F., et al. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology. 2022;76:1121–1134. doi: 10.1002/hep.32427. PubMed DOI PMC
Mato J.M., Alonso C., Noureddin M., Lu S.C. Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J. Gastroenterol. 2019;25:3009–3020. doi: 10.3748/wjg.v25.i24.3009. PubMed DOI PMC
Anjani K., Lhomme M., Sokolovska N., Poitou C., Aron-Wisnewsky J., Bouillot J.L., Lesnik P., Bedossa P., Kontush A., Clement K., et al. Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. J. Hepatol. 2015;62:905–912. doi: 10.1016/j.jhep.2014.11.002. PubMed DOI
Ma D.W., Arendt B.M., Hillyer L.M., Fung S.K., McGilvray I., Guindi M., Allard J.P. Plasma phospholipids and fatty acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects. Nutr. Diabetes. 2016;6:e220. doi: 10.1038/nutd.2016.27. PubMed DOI PMC
Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M.J., Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–1090. doi: 10.1002/hep.21763. PubMed DOI
Parker H.M., Johnson N.A., Burdon C.A., Cohn J.S., O’Connor H.T., George J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012;56:944–951. doi: 10.1016/j.jhep.2011.08.018. PubMed DOI
Oddy W.H., Herbison C.E., Jacoby P., Ambrosini G.L., O’Sullivan T.A., Ayonrinde O.T., Olynyk J.K., Black L.J., Beilin L.J., Mori T.A., et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am. J. Gastroenterol. 2013;108:778–785. doi: 10.1038/ajg.2013.95. PubMed DOI
Geng Y., Faber K.N., de Meijer V.E., Blokzijl H., Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol. Int. 2021;15:21–35. doi: 10.1007/s12072-020-10121-2. PubMed DOI PMC
Rada P., Gonzalez-Rodriguez A., Garcia-Monzon C., Valverde A.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020;11:802. doi: 10.1038/s41419-020-03003-w. PubMed DOI PMC
Pei K., Gui T., Kan D., Feng H., Jin Y., Yang Y., Zhang Q., Du Z., Gai Z., Wu J., et al. An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. Biomed. Res. Int. 2020;2020:4020249. doi: 10.1155/2020/4020249. PubMed DOI PMC
Okada L.S., Oliveira C.P., Stefano J.T., Nogueira M.A., Silva I., Cordeiro F.B., Alves V.A.F., Torrinhas R.S., Carrilho F.J., Puri P., et al. Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH—Proteomic and lipidomic insight. Clin. Nutr. 2018;37:1474–1484. doi: 10.1016/j.clnu.2017.08.031. PubMed DOI
Yonezawa Y., Hada T., Uryu K., Tsuzuki T., Eitsuka T., Miyazawa T., Murakami-Nakai C., Yoshida H., Mizushina Y. Inhibitory effect of conjugated eicosapentaenoic acid on mammalian DNA polymerase and topoisomerase activities and human cancer cell proliferation. Biochem. Pharmacol. 2005;70:453–460. doi: 10.1016/j.bcp.2005.05.008. PubMed DOI
Chapkin R.S., Davidson L.A., Ly L., Weeks B.R., Lupton J.R., McMurray D.N. Immunomodulatory effects of (n-3) fatty acids: Putative link to inflammation and colon cancer. J. Nutr. 2007;137:200S–204S. doi: 10.1093/jn/137.1.200s. PubMed DOI
Kalas M.A., Chavez L., Leon M., Taweesedt P.T., Surani S. Abnormal liver enzymes: A review for clinicians. World J. Hepatol. 2021;13:1688–1698. doi: 10.4254/wjh.v13.i11.1688. PubMed DOI PMC
Videla L.A., Rodrigo R., Araya J., Poniachik J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med. 2006;12:555–558. doi: 10.1016/j.molmed.2006.10.001. PubMed DOI
Valenzuela R., Espinosa A., Gonzalez-Manan D., D’Espessailles A., Fernandez V., Videla L.A., Tapia G. N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS ONE. 2012;7:e46400. doi: 10.1371/journal.pone.0046400. PubMed DOI PMC
Aronis A., Madar Z., Tirosh O. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol Med. 2005;38:1221–1230. doi: 10.1016/j.freeradbiomed.2005.01.015. PubMed DOI
Zhou Y.E., Kubow S., Dewailly E., Julien P., Egeland G.M. Decreased activity of desaturase 5 in association with obesity and insulin resistance aggravates declining long-chain n-3 fatty acid status in Cree undergoing dietary transition. Br. J. Nutr. 2009;102:888–894. doi: 10.1017/S0007114509301609. PubMed DOI
Pettinelli P., Del Pozo T., Araya J., Rodrigo R., Araya A.V., Smok G., Csendes A., Gutierrez L., Rojas J., Korn O., et al. Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: Correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim. Biophys. Acta. 2009;1792:1080–1086. doi: 10.1016/j.bbadis.2009.08.015. PubMed DOI
Elizondo A., Araya J., Rodrigo R., Signorini C., Sgherri C., Comporti M., Poniachik J., Videla L.A. Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biol. Res. 2008;41:59–68. doi: 10.4067/S0716-97602008000100008. PubMed DOI
Duan Y., Li F., Li L., Fan J., Sun X., Yin Y. n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Br. J. Nutr. 2014;111:445–451. doi: 10.1017/S0007114513002584. PubMed DOI
Dasilva G., Pazos M., Garcia-Egido E., Gallardo J.M., Rodriguez I., Cela R., Medina I. Healthy effect of different proportions of marine omega-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem. 2015;26:1385–1392. doi: 10.1016/j.jnutbio.2015.07.007. PubMed DOI
Ferramosca A., Conte A., Burri L., Berge K., De Nuccio F., Giudetti A.M., Zara V. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS ONE. 2012;7:e38797. doi: 10.1371/journal.pone.0038797. PubMed DOI PMC
Depner C.M., Philbrick K.A., Jump D.B. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis. J. Nutr. 2013;143:315–323. doi: 10.3945/jn.112.171322. PubMed DOI PMC
Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010. PubMed DOI
Gorden D.L., Myers D.S., Ivanova P.T., Fahy E., Maurya M.R., Gupta S., Min J., Spann N.J., McDonald J.G., Kelly S.L., et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic. J. Lipid Res. 2015;56:722–736. doi: 10.1194/jlr.P056002. PubMed DOI PMC
Birerdinc A., Younossi Z. Can NASH lipidome provide insight into the pathogenesis of obesity-related non-alcoholic fatty liver disease? J. Hepatol. 2015;62:761–762. doi: 10.1016/j.jhep.2015.01.005. PubMed DOI
Mayo R., Crespo J., Martinez-Arranz I., Banales J.M., Arias M., Minchole I., Aller de la Fuente R., Jimenez-Aguero R., Alonso C., de Luis D.A., et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatol. Commun. 2018;2:807–820. doi: 10.1002/hep4.1188. PubMed DOI PMC
Duan J., Song Y., Zhang X., Wang C. Effect of omega-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front. Physiol. 2021;12:646491. doi: 10.3389/fphys.2021.646491. PubMed DOI PMC
Lamaziere A., Wolf C., Barbe U., Bausero P., Visioli F. Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids. 2013;88:149–154. doi: 10.1016/j.plefa.2012.12.001. PubMed DOI
Spahis S., Alvarez F., Dubois J., Ahmed N., Peretti N., Levy E. Plasma fatty acid composition in French-Canadian children with non-alcoholic fatty liver disease: Effect of n-3 PUFA supplementation. Prostaglandins Leukot. Essent. Fatty Acids. 2015;99:25–34. doi: 10.1016/j.plefa.2015.04.010. PubMed DOI
Yea K., Kim J., Yoon J.H., Kwon T., Kim J.H., Lee B.D., Lee H.J., Lee S.J., Kim J.I., Lee T.G., et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in murine models of diabetes. J. Biol. Chem. 2009;284:33833–33840. doi: 10.1074/jbc.M109.024869. PubMed DOI PMC
Soga T., Ohishi T., Matsui T., Saito T., Matsumoto M., Takasaki J., Matsumoto S., Kamohara M., Hiyama H., Yoshida S., et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 2005;326:744–751. doi: 10.1016/j.bbrc.2004.11.120. PubMed DOI
Grzelczyk A., Gendaszewska-Darmach E. Novel bioactive glycerol-based lysophospholipids: New data—New insight into their function. Biochimie. 2013;95:667–679. doi: 10.1016/j.biochi.2012.10.009. PubMed DOI
McDaniel J.C., Massey K., Nicolaou A. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair. Regen. 2011;19:189–200. doi: 10.1111/j.1524-475X.2010.00659.x. PubMed DOI PMC
Brahmbhatt V., Oliveira M., Briand M., Perrisseau G., Bastic Schmid V., Destaillats F., Pace-Asciak C., Benyacoub J., Bosco N. Protective effects of dietary EPA and DHA on ischemia-reperfusion-induced intestinal stress. J. Nutr. Biochem. 2013;24:104–111. doi: 10.1016/j.jnutbio.2012.02.014. PubMed DOI
de Castro G.S., Calder P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018;37:37–55. doi: 10.1016/j.clnu.2017.01.006. PubMed DOI
Shang T., Liu L., Zhou J., Zhang M., Hu Q., Fang M., Wu Y., Yao P., Gong Z. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis. 2017;16:65. doi: 10.1186/s12944-017-0461-2. PubMed DOI PMC
Anstee Q.M., Goldin R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 2006;87:1–16. doi: 10.1111/j.0959-9673.2006.00465.x. PubMed DOI PMC
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Carlson L.A. Extraction of lipids from human whole serum and lipoproteins and from rat liver tissue with methylene chloride-methanol: A comparison with extraction with chloroform-methanol. Clin. Chim. Acta. 1985;149:89–93. doi: 10.1016/0009-8981(85)90277-3. PubMed DOI
Rubert J., Monforte A., Hurkova K., Perez-Martinez G., Blesa J., Navarro J.L., Stranka M., Soriano J.M., Hajslova J. Untargeted metabolomics of fresh and heat treatment Tiger nut (Cyperus esculentus L.) milks reveals further insight into food quality and nutrition. J. Chromatogr. A. 2017;1514:80–87. doi: 10.1016/j.chroma.2017.07.071. PubMed DOI
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC