N-glycan profiling of tissue samples to aid breast cancer subtyping
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ - DRO (MMCI, 00209805)
the Ministry of Health Development of Research Organization
CZ.02.1.01/0.0/0.0/16_019/0000868
the European Regional Development Fund - Project ENOCH
LM2018125
BBMRI-CZ
LM2023042
CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project
No. CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund-Project "UP CIISB"
PubMed
38172220
PubMed Central
PMC10764792
DOI
10.1038/s41598-023-51021-3
PII: 10.1038/s41598-023-51021-3
Knihovny.cz E-zdroje
- MeSH
- epidermální růstové faktory MeSH
- lidé MeSH
- polysacharidy metabolismus MeSH
- prognóza MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- triple-negativní karcinom prsu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epidermální růstové faktory MeSH
- polysacharidy MeSH
Breast cancer is a highly heterogeneous disease. Its intrinsic subtype classification for diagnosis and choice of therapy traditionally relies on the presence of characteristic receptors. Unfortunately, this classification is often not sufficient for precise prediction of disease prognosis and treatment efficacy. The N-glycan profiles of 145 tumors and 10 healthy breast tissues were determined using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry. The tumor samples were classified into Mucinous, Lobular, No-Special-Type, Human Epidermal Growth Factor 2 + , and Triple-Negative Breast Cancer subtypes. Statistical analysis was conducted using the reproducibility-optimized test statistic software package in R, and the Wilcoxon rank sum test with continuity correction. In total, 92 N-glycans were detected and quantified, with 59 consistently observed in over half of the samples. Significant variations in N-glycan signals were found among subtypes. Mucinous tumor samples exhibited the most distinct changes, with 28 significantly altered N-glycan signals. Increased levels of tri- and tetra-antennary N-glycans were notably present in this subtype. Triple-Negative Breast Cancer showed more N-glycans with additional mannose units, a factor associated with cancer progression. Individual N-glycans differentiated Human Epidermal Growth Factor 2 + , No-Special-Type, and Lobular cancers, whereas lower fucosylation and branching levels were found in N-glycans significantly increased in Luminal subtypes (Lobular and No-Special-Type tumors). Clinically normal breast tissues featured a higher abundance of signals corresponding to N-glycans with bisecting moiety. This research confirms that histologically distinct breast cancer subtypes have a quantitatively unique set of N-glycans linked to clinical parameters like tumor size, proliferative rate, lymphovascular invasion, and metastases to lymph nodes. The presented results provide novel information that N-glycan profiling could accurately classify human breast cancer samples, offer stratification of patients, and ongoing disease monitoring.
Department of Chemistry Indiana University 800 E Kirkwood Avenue Bloomington IN 47405 USA
Department of Pathology Masaryk Memorial Cancer Institute Zluty kopec 7 656 53 Brno Czech Republic
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. PubMed DOI
Stewart SF, Slodkowska-Barabasz J, McGeagh L, Moon Z, Brett J, Wells M, et al. Development of the HT&Me intervention to support women with breast cancer to adhere to adjuvant endocrine therapy and improve quality of life. Breast. 2023;70:32–40. doi: 10.1016/j.breast.2023.05.007. PubMed DOI PMC
Schunemann HJ, Lerda D, Quinn C, Follmann M, Alonso-Coello P, Rossi PG, et al. Breast cancer screening and diagnosis: A synopsis of the European breast guidelines. Ann. Intern. Med. 2020;172(1):46. doi: 10.7326/M19-2125. PubMed DOI
Duffy MJ, McDermott EW, Crown J. Blood-based biomarkers in breast cancer: From proteins to circulating tumor cells to circulating tumor DNA. Tumour Biol. 2018;40(5):1010428318776169. doi: 10.1177/1010428318776169. PubMed DOI
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. doi: 10.1038/35021093. PubMed DOI
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011;121(7):2750–2767. doi: 10.1172/JCI45014. PubMed DOI PMC
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat. Rev. Dis. Primers. 2019;5:1. doi: 10.1038/s41572-019-0111-2. PubMed DOI
Lebeau A, Denkert C. Updated WHO classification of tumors of the breast: The most important changes. Pathologe. 2021;42(3):270–280. doi: 10.1007/s00292-021-00934-9. PubMed DOI
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004;351(27):2817–2826. doi: 10.1056/NEJMoa041588. PubMed DOI
VandeVijver MJ, He YD, VantVeer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002;347(25):1999–2009. doi: 10.1056/NEJMoa021967. PubMed DOI
Constantinidou A, Marcou Y, Toss MS, Simmons T, Bernhisel R, Hughes E, et al. Clinical validation of endopredict in pre-menopausal women with ER-positive, HER2-negative primary breast cancer. Clin. Cancer Res. 2022;1:1. PubMed PMC
Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in breast cancer: Where are we and where are we going? Adv. Clin. Chem. 2015;71:1–23. doi: 10.1016/bs.acc.2015.05.001. PubMed DOI
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019;15(6):346–366. doi: 10.1038/s41581-019-0129-4. PubMed DOI PMC
Hakomori SI. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 1989;52:257–331. doi: 10.1016/S0065-230X(08)60215-8. PubMed DOI
Ogata SI, Muramatsu T, Kobata A. New structural characteristic of large glycopeptides from transformed-cells. Nature. 1976;259(5544):580–582. doi: 10.1038/259580a0. PubMed DOI
Hu YW, Pan JB, Shah P, Ao MH, Thomas SN, Liu Y, et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 2020;33(3):1. doi: 10.1016/j.celrep.2020.108276. PubMed DOI PMC
Alley WR, Vasseur JA, Goetz JA, Svoboda M, Mann BF, Matei DE, et al. N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J. Proteome Res. 2012;11(4):2282–2300. doi: 10.1021/pr201070k. PubMed DOI PMC
Mann BF, Goetz JA, House MG, Schmidt CM, Novotny MV. Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpressed glycoproteins. Mol. Cell. Proteom. 2012;11(7):1. doi: 10.1074/mcp.M111.015792. PubMed DOI PMC
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol. Cell. Proteom. 2016;15(6):1773–1790. doi: 10.1074/mcp.O115.057638. PubMed DOI PMC
Scupakova K, Adelaja OT, Balluff B, Ayyappan V, Tressler CM, Jenkinson NM, et al. Clinical importance of high-mannose, fucosylated, and complex N-glycans in breast cancer metastasis. JCI Insight. 2021;6(24):1. doi: 10.1172/jci.insight.146945. PubMed DOI PMC
Goetz JA, Mechref Y, Kang P, Jeng MH, Novotny MV. Glycomic profiling of invasive and non-invasive breast cancer cells. Glycoconj J. 2009;26(2):117–131. doi: 10.1007/s10719-008-9170-4. PubMed DOI
Kyselova Z, Mechref Y, Kang P, Goetz JA, Dobrolecki LE, Sledge GW, et al. Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin. Chem. 2008;54(7):1166–1175. doi: 10.1373/clinchem.2007.087148. PubMed DOI
Lattova E, Tomanek B, Bartusik D, Perreault H. N-glycomic changes in human breast carcinoma MCF-7 and T-lymphoblastoid cells after treatment with herceptin and herceptin/Lipoplex. J. Proteome Res. 2010;9(3):1533–1540. doi: 10.1021/pr9010266. PubMed DOI
Kang P, Mechref Y, Novotny MV. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 2008;22(5):721–734. doi: 10.1002/rcm.3395. PubMed DOI
Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun. Mass Sp. 2006;20(11):1747–1754. doi: 10.1002/rcm.2509. PubMed DOI
Shubhakar A, Kozak RP, Reiding KR, Royle L, Spencer DIR, Fernandes DL, et al. Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal. Chem. 2016;88(17):8562–8569. doi: 10.1021/acs.analchem.6b01639. PubMed DOI
Holub P, Kozera L, Florindi F, van Enckevort E, Swertz M, Reihs R, et al. BBMRI-ERIC's contributions to research and knowledge exchange on COVID-19. Eur. J. Hum. Genet. 2020;28(6):728–731. doi: 10.1038/s41431-020-0634-8. PubMed DOI PMC
Lattova E, Bryant J, Skrickova J, Zdrahal Z, Popovic M. Efficient procedure for N-glycan analyses and detection of endo H-like activity in human tumor specimens. J. Proteome Res. 2016;15(8):2777–2786. doi: 10.1021/acs.jproteome.6b00346. PubMed DOI
Alley WR, Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: A potential methodology for cancer-biomarker discovery. Anal. Chem. 2010;82(12):5095–5106. doi: 10.1021/ac100131e. PubMed DOI PMC
Lattova E, Skrickova J, Zdrahal Z. Applicability of phenylhydrazine labeling for structural studies of fucosylated N-glycans. Anal. Chem. 2019;91(13):7985–7990. doi: 10.1021/acs.analchem.9b01321. PubMed DOI
Lattova E, Skrickova J, Hausnerova J, Frola L, Kren L, Ihnatova I, et al. N-Glycan profiling of lung adenocarcinoma in patients at different stages of disease. Mod. Pathol. 2020;33(6):1146–1156. doi: 10.1038/s41379-019-0441-3. PubMed DOI
Zahradnikova M, Ihnatova I, Lattova E, Uhrik L, Stuchlikova E, Nenutil R, et al. N-Glycome changes reflecting resistance to platinum-based chemotherapy in ovarian cancer. J. Proteom. 2021;230:1. doi: 10.1016/j.jprot.2020.103964. PubMed DOI
Suomi T, Seyednasrollah F, Jaakkola MK, Faux T, Elo LL. ROTS: An R package for reproducibility-optimized statistical testing. Plos Computational Biology. 2017;13(5). PubMed PMC
Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012;13(7):448–462. doi: 10.1038/nrm3383. PubMed DOI PMC
Liu X, Nie H, Zhang YB, Yao YF, Maitikabili A, Qu YP, et al. Cell Surface-Specific N-Glycan Profiling in Breast Cancer. Plos One. 2013;8(8):1. PubMed PMC
Gebrehiwot AG, Melka DS, Kassaye YM, Rehan IF, Rangappa S, Hinou H, et al. Healthy human serum N-glycan profiling reveals the influence of ethnic variation on the identified cancer-relevant glycan biomarkers. Plos One. 2018;13(12):1. doi: 10.1371/journal.pone.0209515. PubMed DOI PMC
Ding N, Nie H, Sun XM, Sun W, Qu YP, Liu X, et al. Human serum N-glycan profiles are age and sex dependent. Age Ageing. 2011;40(5):568–575. doi: 10.1093/ageing/afr084. PubMed DOI
Mucha E, Lettow M, Marianski M, Thomas DA, Struwe WB, Harvey DJ, et al. Fucose migration in intact protonated glycan ions: A universal phenomenon in mass spectrometry. Angew. Chem. Int. Edit. 2018;57(25):7440–7443. doi: 10.1002/anie.201801418. PubMed DOI
Pett C, Nasir W, Sihlbom C, Olsson BM, Caixeta V, Schorlemer M, et al. Effective assignment of alpha2,3/alpha2,6-sialic acid isomers by LC-MS/MS-based glycoproteomics. Angew. Chem. Int. Ed Engl. 2018;57(30):9320–9324. doi: 10.1002/anie.201803540. PubMed DOI
Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, et al. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarth. Cartil. 2010;18(2):240–248. doi: 10.1016/j.joca.2009.09.004. PubMed DOI PMC
Hanamatsu H, Nishikaze T, Tsumoto H, Ogawa K, Kobayashi T, Yokota I, et al. Comparative glycomic analysis of sialyl linkage isomers by sialic acid linkage-specific alkylamidation in combination with stable isotope labeling of alpha2,3-linked sialic acid residues. Anal. Chem. 2019;91(21):13343–13348. doi: 10.1021/acs.analchem.9b03617. PubMed DOI
Song W, Zhou X, Benktander JD, Gaunitz S, Zou G, Wang Z, et al. In-depth compositional and structural characterization of N-glycans derived from human urinary exosomes. Anal. Chem. 2019;91(21):13528–13537. doi: 10.1021/acs.analchem.9b02620. PubMed DOI PMC
Zhou X, Song W, Novotny MV, Jacobson SC. Fractionation and characterization of sialyl linkage isomers of serum N-glycans by CE-MS. J. Sep. Sci. 2022;1:1. PubMed PMC
Jezkova P, Skrickova J, Wimmer G, Jr, Zelinkova J, Zdrahal Z, Lattova E. Differentiation of sialyl linkages using a combination of alkyl esterification and phenylhydrazine derivatization: Application for N-glycan profiling in the sera of patients with lung cancer. Anal. Chem. 2022;94(18):6736–6744. doi: 10.1021/acs.analchem.2c00105. PubMed DOI
Dedova T, Braicu EI, Sehouli J, Blanchard V. Sialic acid linkage analysis refines the diagnosis of ovarian cancer. Front. Oncol. 2019;9:261. doi: 10.3389/fonc.2019.00261. PubMed DOI PMC
Scott DA, Drake RR. Glycosylation and its implications in breast cancer. Expert. Rev. Proteomic. 2019;16(8):665–680. doi: 10.1080/14789450.2019.1645604. PubMed DOI PMC
Kolbl AC, Andergassen U, Jeschke U. The role of glycosylation in breast cancer metastasis and cancer control. Front. Oncol. 2015;5:219. doi: 10.3389/fonc.2015.00219. PubMed DOI PMC
Scott DA, Casadonte R, Cardinali B, Spruill L, Mehta AS, Carli F, et al. Increases in tumor N-glycan polylactosamines associated with advanced HER2-positive and triple-negative breast cancer tissues. Proteom. Clin. Appl. 2019;13(1):1. doi: 10.1002/prca.201800014. PubMed DOI PMC
Chatterjee S, Ugonotti J, Lee LY, Everest-Dass A, Kawahara R, Thaysen-Andersen M. Trends in oligomannosylation and α1,2-mannosidase expression in human cancers. Oncotarget. 2021;12(21):2188–2205. doi: 10.18632/oncotarget.28064. PubMed DOI PMC
Legler K, Rosprim R, Karius T, Eylmann K, Rossberg M, Wirtz RM, et al. Reduced mannosidase MAN1A1 expression leads to aberrant N-glycosylation and impaired survival in breast cancer. Br. J. Cancer. 2018;118(6):847–856. doi: 10.1038/bjc.2017.472. PubMed DOI PMC
Song YH, Aglipay JA, Bernstein JD, Goswami S, Stanley P. The bisecting GlcNAc on N-glycans inhibits growth factor signaling and retards mammary tumor progression. Cancer Res. 2010;70(8):3361–3371. doi: 10.1158/0008-5472.CAN-09-2719. PubMed DOI PMC
Tan ZQ, Wang CX, Li X, Guan F. Bisecting N-acetylglucosamine structures inhibit hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Front. Physiol. 2018;9:1. doi: 10.3389/fphys.2018.00210. PubMed DOI PMC
Cheng LM, Cao L, Wu YR, Xie WJ, Li JQ, Guan F, et al. Bisecting N-acetylglucosamine on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling. Front. Oncol. 2020;10:1. doi: 10.3389/fonc.2020.00929. PubMed DOI PMC
Driouich A, Gonnet P, Makkie M, Laine AC, Faye L. The role of high-mannose and complex asparagine-linked glycans in the secretion and stability of glycoproteins. Planta. 1989;180(1):96–104. doi: 10.1007/BF02411415. PubMed DOI
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-fucosyltransferase in cancer. Int. J. Mol. Sci. 2021;22(1):1. doi: 10.3390/ijms22010455. PubMed DOI PMC
Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-beta receptor core fucosylation. Breast Cancer Res. 2017;19:1. doi: 10.1186/s13058-017-0904-8. PubMed DOI PMC
Leong SP, Naxerova K, Keller L, Pantel K, Witte M. Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clin. Exp. Metastasis. 2022;39(1):159–179. doi: 10.1007/s10585-021-10120-z. PubMed DOI PMC
Herrera H, Dilday T, Uber A, Scott D, Zambrano JN, Wang M, et al. Core-fucosylated tetra-antennary N-glycan containing a single N-acetyllactosamine branch is associated with poor survival outcome in breast cancer. Int. J. Mol. Sci. 2019;20(10):1. doi: 10.3390/ijms20102528. PubMed DOI PMC
Mohammed RAA, Martin SG, Gill MS, Green AR, Paish EC, Ellis IO. Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am. J. Surg. Pathol. 2007;31(12):1825–1833. doi: 10.1097/PAS.0b013e31806841f6. PubMed DOI
Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA. Molecular mechanisms underlying lymphovascular invasion in invasive breast cancer. Pathobiology. 2015;82(3–4):113–123. doi: 10.1159/000433583. PubMed DOI
Houvenaeghel G, Cohen M, Classe JM, Reyal F, Mazouni C, Chopin N, et al. Lymphovascular invasion has a significant prognostic impact in patients with early breast cancer, results from a large, national, multicenter, retrospective cohort study. ESMO Open. 2021;6(6):316. doi: 10.1016/j.esmoop.2021.100316. PubMed DOI PMC
de Leoz ML, Young LJ, An HJ, Kronewitter SR, Kim J, Miyamoto S, et al. High-mannose glycans are elevated during breast cancer progression. Mol. Cell Proteom. 2011;10(1):717. PubMed PMC
Fudalej MM, Fudalef MM, Badowska-Kozakiewicz AM. Histopathological analysis of mucinous breast cancer subtypes and comparison with invasive carcinoma of no special type. Sci. Rep. 2021;11(1):1. PubMed PMC
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, et al. Metabolic links to socioeconomic stresses uniquely affecting ancestry in normal breast tissue at risk for breast cancer. Front. Oncol. 2022;12:876651. doi: 10.3389/fonc.2022.876651. PubMed DOI PMC
Li QY, Li GY, Zhou Y, Zhang X, Sun M, Jiang H, et al. Comprehensive N-glycome profiling of cells and tissues for breast cancer diagnosis. J. Proteome Res. 2019;18(6):2559–2570. doi: 10.1021/acs.jproteome.9b00073. PubMed DOI
Peric L, Vukadin S, Petrovic A, Kuna L, Puseljic N, Sikora R, et al. Glycosylation alterations in cancer cells, prognostic value of glycan biomarkers and their potential as novel therapeutic targets in breast cancer. Biomedicines. 2022;10(12):1. doi: 10.3390/biomedicines10123265. PubMed DOI PMC
Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as targets for drug delivery in cancer. Cancers. 2022;14(4):1. doi: 10.3390/cancers14040911. PubMed DOI PMC
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. BBA-Rev Cancer. 2021;1875(1):1. PubMed PMC
Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J, et al. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum. Mol. Genet. 2009;18(14):2599–2608. doi: 10.1093/hmg/ddp194. PubMed DOI