W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38188265
PubMed Central
PMC10767701
DOI
10.1021/acs.cgd.3c01094
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from γ-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (μReactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.
CEITEC BUT Brno University of Technology Purkynova 123 CZ 61200 Brno Czech Republic
Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
Department of Materials Science Montanuniversität Leoben Franz Josef Straße 18 A 8700 Leoben Austria
Thermo Fisher Scientific Vlastimila Pecha 12 CZ 62700 Brno Czech Republic
Zobrazit více v PubMed
Bandi S.; Srivastav A. K. Review: Oxygen-Deficient Tungsten Oxides. J. Mater. Sci. 2021, 56 (11), 6615–6644. 10.1007/s10853-020-05757-2. DOI
Zhang L.; Wang H.; Liu J.; Zhang Q.; Yan H. Nonstoichiometric Tungsten Oxide: Structure, Synthesis, and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31 (2), 861–873. 10.1007/s10854-019-02596-z. DOI
Wu C.-M.; Naseem S.; Chou M.-H.; Wang J.-H.; Jian Y.-Q. Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Front. Mater. 2019, 6, 49. 10.3389/fmats.2019.00049. DOI
Cong S.; Geng F.; Zhao Z. Tungsten Oxide Materials for Optoelectronic Applications. Adv. Mater. 2016, 28 (47), 10518–10528. 10.1002/adma.201601109. PubMed DOI
Xi G.; Ouyang S.; Li P.; Ye J.; Ma Q.; Su N.; Bai H.; Wang C. Ultrathin W PubMed DOI
Guo C.; Yin S.; Huang Y.; Dong Q.; Sato T. Synthesis of W PubMed DOI
Guo C.; Yin S.; Yan M.; Kobayashi M.; Kakihana M.; Sato T. Morphology-Controlled Synthesis of W PubMed DOI
Li G.; Wu G.; Guo C.; Wang B. Fabrication of One-Dimensional W DOI
Chang Y.; Wang Z.; Shi Y.; Ma X.; Ma L.; Zhang Y.; Zhan J. Hydrophobic W DOI
Fang Z.; Jiao S.; Wang B.; Yin W.; Pang G. A Flexible, Self-Floating Composite for Efficient Water Evaporation. Global Chall. 2019, 3 (6), 1800085. 10.1002/gch2.201800085. PubMed DOI PMC
Chala T. F.; Wu C.-M.; Chou M.-H.; Guo Z.-L. Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation. ACS Appl. Mater. Interfaces 2018, 10 (34), 28955–28962. 10.1021/acsami.8b07434. PubMed DOI
Zhang M.; Cheng G.; Wei Y.; Wen Z.; Chen R.; Xiong J.; Li W.; Han C.; Li Z. Cuprous Ion (Cu+) Doping Induced Surface/Interface Engineering for Enhancing the CO PubMed DOI
Li X.; Yang S.; Sun J.; He P.; Xu X.; Ding G. Tungsten Oxide Nanowire-Reduced Graphene Oxide Aerogel for High-Efficiency Visible Light Photocatalysis. Carbon 2014, 78, 38–48. 10.1016/j.carbon.2014.06.034. DOI
Xu M.; Jia S.; Li H.; Zhang Z.; Guo Y.; Chen C.; Chen S.; Yan J.; Zhao W.; Yun J. DOI
Lundberg M.; Sundberg M.; Magnéli A. The “Pentagonal Column” as a Building Unit in Crystal and Defect Structures of Some Groups of Transition Metal Compounds. J. Solid State Chem. 1982, 44 (1), 32–40. 10.1016/0022-4596(82)90398-X. DOI
Ko R.-M.; Wang S.-J.; Hsu W.-C.; Lin Y.-R. From Metastable to Stable: Possible Mechanisms for the Evolution of W DOI
Tilley R. J. D. The Crystal Chemistry of the Higher Tungsten Oxides. Int. J. Refract. Hard Met. 1995, 13 (1–3), 93–109. 10.1016/0263-4368(95)00004-6. DOI
Yue L.; Tang J.; Li F.; Xu N.; Zhang F.; Zhang Q.; Guan R.; Hong J.; Zhang W. Enhanced Reversible Lithium Storage in Ultrathin W DOI
Zhang W.; Yue L.; Zhang F.; Zhang Q.; Gui X.; Guan R.; Hou G.; Xu N. One-Step DOI
Sun Y.; Wang W.; Qin J.; Zhao D.; Mao B.; Xiao Y.; Cao M. Oxygen Vacancy-Rich Mesoporous W DOI
de la Cruz A. M.; García-Alvarado F.; Morán E.; Alario-Franco M. A.; Torres-Martínez L. M. Lithium in W DOI
Li K.; Shao Y.; Yan H.; Lu Z.; Griffith K. J.; Yan J.; Wang G.; Fan H.; Lu J.; Huang W.; Bao B.; Liu X.; Hou C.; Zhang Q.; Li Y.; Yu J.; Wang H. Lattice-Contraction Triggered Synchronous Electrochromic Actuator. Nat. Commun. 2018, 9 (1), 4798. 10.1038/s41467-018-07241-7. PubMed DOI PMC
Margolin A.; Rosentsveig R.; Albu-Yaron A.; Popovitz-Biro R.; Tenne R. Study of the Growth Mechanism of WS DOI
Wang B.-R.; Wang R.-Z.; Liu L.-Y.; Wang C.; Zhang Y.-F.; Sun J.-B. WO DOI
Xiong Y.; Zhu Z.; Guo T.; Li H.; Xue Q. Synthesis of Nanowire Bundle-like WO PubMed DOI
Qin Y.; Li X.; Wang F.; Hu M. Solvothermally Synthesized Tungsten Oxide Nanowires/Nanorods for NO DOI
Zhao Z.; Bai Y.; Ning W.; Fan J.; Gu Z.; Chang H.; Yin S. Effect of Surfactants on the Performance of 3D Morphology W18O49 by Solvothermal Synthesis. Appl. Surf. Sci. 2019, 471, 537–544. 10.1016/j.apsusc.2018.12.041. DOI
Woo K.; Hong J.; Ahn J.-P.; Park J.-K.; Kim K.-J. Coordinatively Induced Length Control and Photoluminescence of W PubMed DOI
Moshofsky B.; Mokari T. Length and Diameter Control of Ultrathin Nanowires of Substoichiometric Tungsten Oxide with Insights into the Growth Mechanism. Chem. Mater. 2013, 25 (8), 1384–1391. 10.1021/cm302015z. DOI
Shi S.; Xue X.; Feng P.; Liu Y.; Zhao H.; Wang T. Low-Temperature Synthesis and Electrical Transport Properties of W DOI
Rao P. M.; Zheng X. Flame Synthesis of Tungsten Oxide Nanostructures on Diverse Substrates. Proc. Combust. Inst. 2011, 33 (2), 1891–1898. 10.1016/j.proci.2010.06.071. DOI
Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS DOI
Tang Z.; Li X.; Wu G.; Gao S.; Chen Q.; Peng L.; Wei X. Whole-Journey Nanomaterial Research in an Electron Microscope: From Material Synthesis, Composition Characterization, Property Measurements to Device Construction and Tests. Nanotechnology 2016, 27 (48), 485710 10.1088/0957-4484/27/48/485710. PubMed DOI
Greiner A.; Wendorff J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem., Int. Ed. 2007, 46 (30), 5670–5703. 10.1002/anie.200604646. PubMed DOI
Xue J.; Xie J.; Liu W.; Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50 (8), 1976–1987. 10.1021/acs.accounts.7b00218. PubMed DOI PMC
Thavasi V.; Singh G.; Ramakrishna S. Electrospun Nanofibers in Energy and Environmental Applications. Energy Environ. Sci. 2008, 1 (2), 205. 10.1039/b809074m. DOI
Kundrat V.; Moravec Z.; Pinkas J. Preparation of Thorium Dioxide Nanofibers by Electrospinning. J. Nucl. Mater. 2020, 534, 152153 10.1016/j.jnucmat.2020.152153. DOI
Lu N.; Zhang Z.; Wang Y.; Liu B.; Guo L.; Wang L.; Huang J.; Liu K.; Dong B. Direct Evidence of IR-Driven Hot Electron Transfer in Metal-Free Plasmonic W DOI
Zhang Z.; Jiang X.; Liu B.; Guo L.; Lu N.; Wang L.; Huang J.; Liu K.; Dong B. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H PubMed DOI
Ma Y.; He D.; Liu J.; Wang Y.; Yang M.; Wang H.; Qiu J.; Li W.; Li Y.; Wang C.. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W DOI
Kundrat V.; Vykoukal V.; Moravec Z.; Simonikova L.; Novotny K.; Pinkas J. Preparation of Polycrystalline Tungsten Nanofibers by Needleless Electrospinning. J. Alloys Compd. 2022, 900, 163542 10.1016/j.jallcom.2021.163542. DOI
Kundrat V.; Rosentsveig R.; Brontvein O.; Tenne R.; Pinkas J.. Synthesis and Characterization of WS DOI
Hashimoto H.; Tanaka K.; Yoda E. Growth and Evaporation of Tungsten Oxide Crystals. J. Phys. Soc. Jpn. 1960, 15 (6), 1006–1014. 10.1143/JPSJ.15.1006. DOI
Zhang Z.; Wang Y.; Li H.; Yuan W.; Zhang X.; Sun C.; Zhang Z. Atomic-Scale Observation of Vapor–Solid Nanowire Growth PubMed DOI
Shen G.; Bando Y.; Golberg D.; Zhou C. Electron-Beam-Induced Synthesis and Characterization of W DOI
Chen C. L.; Mori H. PubMed DOI
Blackburn P. E.; Hoch M.; Johnston H. L. The Vaporization of Molybdenum and Tungsten Oxides. J. Phys. Chem. 1958, 62 (7), 769–773. 10.1021/j150565a001. DOI
Zhu L.; Zhang Z.; Ke X.; Wang J.; Perepezko J.; Sui M. WO DOI
Migas D. B.; Shaposhnikov V. L.; Borisenko V. E. Tungsten Oxides. II. The Metallic Nature of Magnéli Phases. J. Appl. Phys. 2010, 108 (9), 093714 10.1063/1.3505689. DOI
Migas D. B.; Filonov A. B.; Skorodumova N. V. Effects of Bipolarons on Oxidation States, and the Electronic and Optical Properties of W PubMed DOI
Lu Y.; Jia X.; Ma Z.; Li Y.; Yue S.; Liu X.; Zhang J. W DOI
Yang Y.-Y.; Egerton R. F. Tests of Two Alternative Methods for Measuring Specimen Thickness in a Transmission Electron Microscope. Micron 1995, 26 (1), 1–5. 10.1016/0968-4328(94)00039-S. DOI
Kirkland E. J. Some Effects of Electron Channeling on Electron Energy Loss Spectroscopy. Ultramicroscopy 2005, 102 (3), 199–207. 10.1016/j.ultramic.2004.09.010. PubMed DOI
Mele L.; Konings S.; Dona P.; Evertz F.; Mitterbauer C.; Faber P.; Schampers R.; Jinschek J. R. A MEMS-Based Heating Holder for the Direct Imaging of Simultaneous PubMed DOI
Novák L.; Stárek J.; Vystavěl T.; Mele L. MEMS-Based Heating Element for DOI
Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals
Mechanism of WS2 Nanotube Formation Revealed by in Situ/ex Situ Imaging