• This record comes from PubMed

Molecular pathology in diagnosis and prognostication of head and neck tumors

. 2024 Feb ; 484 (2) : 215-231. [epub] 20240113

Language English Country Germany Media print-electronic

Document type Journal Article, Review

Links

PubMed 38217715
PubMed Central PMC10948559
DOI 10.1007/s00428-023-03731-2
PII: 10.1007/s00428-023-03731-2
Knihovny.cz E-resources

Classification of head and neck tumors has evolved in recent decades including a widespread application of molecular testing in tumors of the salivary glands, sinonasal tract, oropharynx, nasopharynx, and soft tissue. Availability of new molecular techniques allowed for the definition of multiple novel tumor types unique to head and neck sites. Moreover, the expanding spectrum of immunohistochemical markers facilitates a rapid identification of diagnostic molecular abnormalities. As such, it is currently possible for head and neck pathologists to benefit from a molecularly defined classifications, while making diagnoses that are still based largely on histopathology and immunohistochemistry. This review highlights some principal molecular alterations in head and neck neoplasms presently available to assist pathologists in the practice of diagnosis, prognostication and prediction of response to treatment.

See more in PubMed

WHO Classification of Tumours Editorial Board (2023) Head and neck tumours. Lyon (France): International Agency for Research on Cancer; forthcoming. (WHO classification of tumours series, 5th edn, vol. 9). https://publications.iarc.fr

Skalova A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010;34:599–608. doi: 10.1097/PAS.0b013e3181d9efcc. PubMed DOI

Skalova A, Vanecek T, Martinek P, et al. Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation: Report of 10 Cases. Am J Surg Pathol. 2018;42:234–246. doi: 10.1097/PAS.0000000000000972. PubMed DOI

Skalova A, Vanecek T, Majewska H, et al. Mammary analogue secretory carcinoma of salivary glands with high-grade transformation: report of 3 cases with the ETV6-NTRK3 gene fusion and analysis of TP53, beta-catenin, EGFR, and CCND1 genes. Am J Surg Pathol. 2014;38:23–33. doi: 10.1097/PAS.0000000000000088. PubMed DOI

Fujii K, Murase T, Beppu S, et al. MYB, MYBL1, MYBL2 and NFIB gene alterations and MYC overexpression in salivary gland adenoid cystic carcinoma. Histopathology. 2017;71:823–834. doi: 10.1111/his.13281. PubMed DOI

Jee KJ, Persson M, Heikinheimo K, et al. Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod Pathol. 2013;26:213–222. doi: 10.1038/modpathol.2012.154. PubMed DOI

Okumura Y, Miyabe S, Nakayama T, et al. Impact of CRTC1/3-MAML2 fusions on histological classification and prognosis of mucoepidermoid carcinoma. Histopathology. 2011;59:90–97. doi: 10.1111/j.1365-2559.2011.03890.x. PubMed DOI

Antonescu CR, Katabi N, Zhang L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50:559–570. doi: 10.1002/gcc.20881. PubMed DOI

Rooper LM, Karantanos T, Ning Y, et al. Salivary Secretory Carcinoma With a Novel ETV6-MET Fusion: Expanding the Molecular Spectrum of a Recently Described Entity. Am J Surg Pathol. 2018;42:1121–1126. doi: 10.1097/PAS.0000000000001065. PubMed DOI

Skalova A, Baneckova M, Thompson LDR, et al. Expanding the Molecular Spectrum of Secretory Carcinoma of Salivary Glands With a Novel VIM-RET Fusion. Am J Surg Pathol. 2020;44:1295–1307. doi: 10.1097/PAS.0000000000001535. PubMed DOI

Sasaki E, Masago K, Fujita S, et al. Salivary Secretory Carcinoma Harboring a Novel ALK Fusion: Expanding the Molecular Characterization of Carcinomas Beyond the ETV6. Gene Am J Surg Pathol. 2020;44:962–969. doi: 10.1097/PAS.0000000000001471. PubMed DOI

Guilmette J, Dias-Santagata D, Nose V, et al. Novel gene fusions in secretory carcinoma of the salivary glands: enlarging the ETV6 family. Hum Pathol. 2019;83:50–58. doi: 10.1016/j.humpath.2018.08.011. PubMed DOI

Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–747. doi: 10.1038/s41571-018-0113-0. PubMed DOI PMC

Lassen U. How I treat NTRK gene fusion-positive cancers. ESMO Open. 2019;4:e000612. doi: 10.1136/esmoopen-2019-000612. PubMed DOI PMC

Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019;30:viii23–viii30. doi: 10.1093/annonc/mdz282. PubMed DOI PMC

Drilon A, Hu ZI, Lai GGY, et al. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15:151–167. doi: 10.1038/nrclinonc.2017.175. PubMed DOI PMC

Seethala RR, Dacic S, Cieply K, et al. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol. 2010;34:1106–1121. doi: 10.1097/PAS.0b013e3181de3021. PubMed DOI

Nakayama T, Miyabe S, Okabe M, et al. Clinicopathological significance of the CRTC3-MAML2 fusion transcript in mucoepidermoid carcinoma. Mod Pathol. 2009;22:1575–1581. doi: 10.1038/modpathol.2009.126. PubMed DOI

Moller E, Stenman G, Mandahl N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol. 2008;215:78–86. doi: 10.1002/path.2327. PubMed DOI

Othman BK, Steiner P, Leivo I, et al. Rearrangement of KMT2A Characterizes a Subset of Pediatric Parotid Mucoepidermoid Carcinomas Arising Metachronous to Acute Lymphoblastic Leukemia. Fetal Pediatr Pathol. 2023;42:796–807. doi: 10.1080/15513815.2023.2241903. PubMed DOI

Cheung LC, Aya-Bonilla C, Cruickshank MN, et al. Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy. Leukemia. 2023;37:61–71. doi: 10.1038/s41375-022-01746-3. PubMed DOI PMC

Persson M, Andren Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106:18740–18744. doi: 10.1073/pnas.0909114106. PubMed DOI PMC

Persson M, Andren Y, Moskaluk CA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer. 2012;51:805–817. doi: 10.1002/gcc.21965. PubMed DOI

Steiner P, Andreasen S, Grossmann P, et al. Prognostic significance of 1p36 locus deletion in adenoid cystic carcinoma of the salivary glands. Virchows Arch. 2018;473:471–480. doi: 10.1007/s00428-018-2349-6. PubMed DOI

Ho AS, Kannan K, Roy DM, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45:791–798. doi: 10.1038/ng.2643. PubMed DOI PMC

Ho AS, Ochoa A, Jayakumaran G, et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest. 2019;129:4276–4289. doi: 10.1172/JCI128227. PubMed DOI PMC

Miller LE, Au V, Mokhtari TE, et al. (2022) A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers (Basel) 14. 10.3390/cancers14040992 PubMed PMC

Dalin MG, Desrichard A, Katabi N, et al. Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clin Cancer Res. 2016;22:4623–4633. doi: 10.1158/1078-0432.CCR-16-0637. PubMed DOI PMC

Bahrami A, Perez-Ordonez B, Dalton JD, et al. An analysis of PLAG1 and HMGA2 rearrangements in salivary duct carcinoma and examination of the role of precursor lesions. Histopathology. 2013;63:250–262. doi: 10.1111/his.12152. PubMed DOI

Chiosea SI, Thompson LD, Weinreb I, et al. Subsets of salivary duct carcinoma defined by morphologic evidence of pleomorphic adenoma, PLAG1 or HMGA2 rearrangements, and common genetic alterations. Cancer. 2016;122:3136–3144. doi: 10.1002/cncr.30179. PubMed DOI PMC

Agaimy A, Baneckova M, Ihrler S, et al. ALK Rearrangements Characterize 2 Distinct Types of Salivary Gland Carcinomas: Clinicopathologic and Molecular Analysis of 4 Cases and Literature Review. Am J Surg Pathol. 2021;45:1166–1178. doi: 10.1097/PAS.0000000000001698. PubMed DOI

Santana T, Pavel A, Martinek P, et al. Biomarker immunoprofile and molecular characteristics in salivary duct carcinoma: clinicopathological and prognostic implications. Hum Pathol. 2019;93:37–47. doi: 10.1016/j.humpath.2019.08.009. PubMed DOI

Uijen MJM, Lassche G, van Engen-van Grunsven ACH, et al. Systemic therapy in the management of recurrent or metastatic salivary duct carcinoma: A systematic review. Cancer Treat Rev. 2020;89:102069. doi: 10.1016/j.ctrv.2020.102069. PubMed DOI

Rahman M, Griffith CC. Salivary Duct Carcinoma: An Aggressive Salivary Gland Carcinoma with Morphologic Variants Newly Identified Molecular Characteristics, and Emerging Treatment Modalities. Surg Pathol Clin. 2021;14:111–126. doi: 10.1016/j.path.2020.09.010. PubMed DOI

Chapman E, Skalova A, Ptakova N, et al. Molecular Profiling of Hyalinizing Clear Cell Carcinomas Revealed a Subset of Tumors Harboring a Novel EWSR1-CREM Fusion: Report of 3 Cases. Am J Surg Pathol. 2018;42:1182–1189. doi: 10.1097/PAS.0000000000001114. PubMed DOI

Skalova A, Stenman G, Simpson RHW, et al. The Role of Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am J Surg Pathol. 2018;42:e11–e27. doi: 10.1097/PAS.0000000000000980. PubMed DOI

Nakaguro M, Nagao T. Epithelial-Myoepithelial Carcinoma. Surg Pathol Clin. 2021;14:97–109. doi: 10.1016/j.path.2020.10.002. PubMed DOI

Urano M, Nakaguro M, Yamamoto Y, et al. Diagnostic Significance of HRAS Mutations in Epithelial-Myoepithelial Carcinomas Exhibiting a Broad Histopathologic Spectrum. Am J Surg Pathol. 2019;43:984–994. doi: 10.1097/PAS.0000000000001258. PubMed DOI

Michal M, Skalova A, Simpson RH, et al. Cribriform adenocarcinoma of the tongue: a hitherto unrecognized type of adenocarcinoma characteristically occurring in the tongue. Histopathology. 1999;35:495–501. doi: 10.1046/j.1365-2559.1999.00792.x. PubMed DOI

Skalova A, Sima R, Kaspirkova-Nemcova J, et al. Cribriform adenocarcinoma of minor salivary gland origin principally affecting the tongue: characterization of new entity. Am J Surg Pathol. 2011;35:1168–1176. doi: 10.1097/PAS.0b013e31821e1f54. PubMed DOI

Sebastiao APM, Xu B, Lozada JR, et al. Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD genes. Mod Pathol. 2020;33:65–73. doi: 10.1038/s41379-019-0351-4. PubMed DOI PMC

Owosho AA, Baker E, Wood CB, et al. A novel STRN3::PRKD1 fusion in a cribriform adenocarcinoma of salivary gland with high-grade transformation. Genes Chromosomes Cancer. 2023;62:624–628. doi: 10.1002/gcc.23181. PubMed DOI

Hahn E, Xu B, Katabi N, et al. Comprehensive Molecular Characterization of Polymorphous Adenocarcinoma, Cribriform Subtype: Identifying Novel Fusions and Fusion Partners. Mod Pathol. 2023;36:100305. doi: 10.1016/j.modpat.2023.100305. PubMed DOI PMC

Stenman G, Fehr A, Skalova A, et al. (2022) Chromosome Translocations, Gene Fusions, and Their Molecular Consequences in Pleomorphic Salivary Gland Adenomas. Biomedicines 10. doi: 10.3390/biomedicines10081970 PubMed PMC

Stenman G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol. 2013;7(Suppl 1):S12–19. doi: 10.1007/s12105-013-0462-z. PubMed DOI PMC

Katabi N, Xu B, Jungbluth AA, et al. PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: a comparative study with PLAG1 genetic abnormalities. Histopathology. 2018;72:285–293. doi: 10.1111/his.13341. PubMed DOI PMC

Mito JK, Jo VY, Chiosea SI, et al. HMGA2 is a specific immunohistochemical marker for pleomorphic adenoma and carcinoma ex-pleomorphic adenoma. Histopathology. 2017;71:511–521. doi: 10.1111/his.13246. PubMed DOI

Bishop JA, Weinreb I, Swanson D, et al. Microsecretory Adenocarcinoma: A Novel Salivary Gland Tumor Characterized by a Recurrent MEF2C-SS18 Fusion. Am J Surg Pathol. 2019;43:1023–1032. doi: 10.1097/PAS.0000000000001273. PubMed DOI

Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767–775. doi: 10.1038/s41591-019-0434-2. PubMed DOI PMC

Todorovic E, Truong T, Eskander A, et al. Middle Ear and Temporal Bone Nonkeratinizing Squamous Cell Carcinomas With DEK-AFF2 Fusion: An Emerging Entity. Am J Surg Pathol. 2020;44:1244–1250. doi: 10.1097/PAS.0000000000001498. PubMed DOI

French CA, Miyoshi I, Kubonishi I, et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–307. PubMed

Pivot-Pajot C, Caron C, Govin J, et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 2003;23:5354–5365. doi: 10.1128/MCB.23.15.5354-5365.2003. PubMed DOI PMC

French CA, Ramirez CL, Kolmakova J, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27:2237–2242. doi: 10.1038/sj.onc.1210852. PubMed DOI

Huang QW, He LJ, Zheng S, et al. An Overview of Molecular Mechanism Clinicopathological Factors, and Treatment in NUT Carcinoma. Biomed Res Int. 2019;2019:1018439. doi: 10.1155/2019/1018439. PubMed DOI PMC

Haack H, Johnson LA, Fry CJ, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol. 2009;33:984–991. doi: 10.1097/PAS.0b013e318198d666. PubMed DOI PMC

French CA, Rahman S, Walsh EM, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov. 2014;4:928–941. doi: 10.1158/2159-8290.CD-14-0014. PubMed DOI PMC

Alekseyenko AA, Walsh EM, Zee BM, et al. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E4184–E4192. doi: 10.1073/pnas.1702086114. PubMed DOI PMC

Bauer DE, Mitchell CM, Strait KM, et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin Cancer Res. 2012;18:5773–5779. doi: 10.1158/1078-0432.CCR-12-1153. PubMed DOI PMC

Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–1073. doi: 10.1038/nature09504. PubMed DOI PMC

Wang X, Haswell JR, Roberts CW. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer–mechanisms and potential therapeutic insights. Clin Cancer Res. 2014;20:21–27. doi: 10.1158/1078-0432.CCR-13-0280. PubMed DOI PMC

Agaimy A, Hartmann A, Antonescu CR, et al. SMARCB1 (INI-1)-deficient Sinonasal Carcinoma: A Series of 39 Cases Expanding the Morphologic and Clinicopathologic Spectrum of a Recently Described Entity. Am J Surg Pathol. 2017;41:458–471. doi: 10.1097/PAS.0000000000000797. PubMed DOI PMC

Agaimy A, Jain D, Uddin N, et al. SMARCA4-deficient Sinonasal Carcinoma: A Series of 10 Cases Expanding the Genetic Spectrum of SWI/SNF-driven Sinonasal Malignancies. Am J Surg Pathol. 2020;44:703–710. doi: 10.1097/PAS.0000000000001428. PubMed DOI

Agaimy A. SWI/SNF-deficient Sinonasal Carcinomas. Adv Anat Pathol. 2023;30:95–103. doi: 10.1097/PAP.0000000000000372. PubMed DOI

Ngo C, Postel-Vinay S (2022) Immunotherapy for SMARCB1-Deficient sarcomas: current evidence and future developments. Biomedicines 10. doi: 10.3390/biomedicines10030650 PubMed PMC

Aspeslagh S, Morel D, Soria JC, et al. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann Oncol. 2018;29:812–824. doi: 10.1093/annonc/mdy050. PubMed DOI

Jo VY, Chau NG, Hornick JL, et al. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol. 2017;30:650–659. doi: 10.1038/modpathol.2016.239. PubMed DOI

Dogan S, Chute DJ, Xu B, et al. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol. 2017;242:400–408. doi: 10.1002/path.4915. PubMed DOI PMC

Riobello C, Lopez-Hernandez A, Cabal VN, et al. IDH2 Mutation Analysis in Undifferentiated and Poorly Differentiated Sinonasal Carcinomas for Diagnosis and Clinical Management. Am J Surg Pathol. 2020;44:396–405. doi: 10.1097/PAS.0000000000001420. PubMed DOI

Mito JK, Bishop JA, Sadow PM, et al. Immunohistochemical Detection and Molecular Characterization of IDH-mutant Sinonasal Undifferentiated Carcinomas. Am J Surg Pathol. 2018;42:1067–1075. doi: 10.1097/PAS.0000000000001064. PubMed DOI

Chambers KJ, Lehmann AE, Remenschneider A, et al. Incidence and survival patterns of sinonasal undifferentiated carcinoma in the United States J Neurol Surg B. Skull Base. 2015;76:94–100. doi: 10.1055/s-0034-1390016. PubMed DOI PMC

Bishop JA, Ogawa T, Stelow EB, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a peculiar variant of head and neck cancer restricted to the sinonasal tract. Am J Surg Pathol. 2013;37:836–844. doi: 10.1097/PAS.0b013e31827b1cd6. PubMed DOI PMC

Rodarte AI, Parikh AS, Gadkaree SK, et al. Human Papillomavirus Related Multiphenotypic Sinonasal Carcinoma: Report of a Case with Early and Progressive Metastatic Disease. J Neurol Surg Rep. 2019;80:e41–e43. doi: 10.1055/s-0039-3399571. PubMed DOI PMC

Wang X, Bledsoe KL, Graham RP, et al. Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet. 2014;46:666–668. doi: 10.1038/ng.2989. PubMed DOI PMC

Fritchie KJ, Jin L, Wang X, et al. Fusion gene profile of biphenotypic sinonasal sarcoma: an analysis of 44 cases. Histopathology. 2016;69:930–936. doi: 10.1111/his.13045. PubMed DOI

Le Loarer F, Laffont S, Lesluyes T, et al. Clinicopathologic and Molecular Features of a Series of 41 Biphenotypic Sinonasal Sarcomas Expanding Their Molecular Spectrum. Am J Surg Pathol. 2019;43:747–754. doi: 10.1097/PAS.0000000000001238. PubMed DOI PMC

Nichols MM, Alruwaii F, Chaaban M, et al. Biphenotypic Sinonasal Sarcoma with a Novel PAX3::FOXO6 Fusion: A Case Report and Review of the Literature. Head Neck Pathol. 2023;17:259–264. doi: 10.1007/s12105-022-01479-w. PubMed DOI PMC

Kominsky E, Boyke AE, Madani D, et al. Biphenotypic Sinonasal Sarcoma: A Case Report and Review of Literature. Ear Nose Throat J. 2023;102:385–390. doi: 10.1177/0145561321999196. PubMed DOI

Bell D, Phan J, DeMonte F, et al. High-grade transformation of low-grade biphenotypic sinonasal sarcoma: Radiological, morphophenotypic variation and confirmatory molecular analysis. Ann Diagn Pathol. 2022;57:151889. doi: 10.1016/j.anndiagpath.2021.151889. PubMed DOI

Hasnie S, Glenn C, Peterson JEG, et al. High-Grade Biphenotypic Sinonasal Sarcoma: A Case Report. J Neurol Surg Rep. 2022;83:e105–e109. doi: 10.1055/s-0042-1755599. PubMed DOI PMC

Meyer A, Klubickova N, Mosaieby E, et al. Biphenotypic sinonasal sarcoma with PAX3::MAML3 fusion transforming into high-grade rhabdomyosarcoma: report of an emerging rare phenomenon. Virchows Arch. 2023;482:777–782. doi: 10.1007/s00428-023-03501-0. PubMed DOI PMC

Schultz KAP, Williams GM, Kamihara J, et al. DICER1 and Associated Conditions: Identification of At-risk Individuals and Recommended Surveillance Strategies. Clin Cancer Res. 2018;24:2251–2261. doi: 10.1158/1078-0432.CCR-17-3089. PubMed DOI PMC

Klubickova N, Michal M, Agaimy A, et al. TIMP3::ALK fusions characterize a distinctive myxoid fibroblastic tumor of the vocal cords: a report of 7 cases. Virchows Arch. 2022;481:721–729. doi: 10.1007/s00428-022-03389-2. PubMed DOI

Kerr DA, Thompson LDR, Tafe LJ, et al. Clinicopathologic and Genomic Characterization of Inflammatory Myofibroblastic Tumors of the Head and Neck: Highlighting a Novel Fusion and Potential Diagnostic Pitfall. Am J Surg Pathol. 2021;45:1707–1719. doi: 10.1097/PAS.0000000000001735. PubMed DOI

Smith BC, Ellis GL, Meis-Kindblom JM, et al. Ectomesenchymal chondromyxoid tumor of the anterior tongue Nineteen cases of a new clinicopathologic entity. Am J Surg Pathol. 1995;19:519–530. doi: 10.1097/00000478-199505000-00003. PubMed DOI

Bubola J, Hagen K, Blanas N, et al. Expanding awareness of the distribution and biologic potential of ectomesenchymal chondromyxoid tumor. Head Neck Pathol. 2021;15:319–322. doi: 10.1007/s12105-020-01169-5. PubMed DOI PMC

Argyris PP, Bilodeau EA, Yancoskie AE, et al. A subset of ectomesenchymal chondromyxoid tumours of the tongue show EWSR1 rearrangements and are genetically linked to soft tissue myoepithelial neoplasms: a study of 11 cases. Histopathology. 2016;69:607–613. doi: 10.1111/his.12973. PubMed DOI

Dickson BC, Antonescu CR, Argyris PP, et al. Ectomesenchymal chondromyxoid tumor: a neoplasm characterized by recurrent RREB1-MKL2 fusions. Am J Surg Pathol. 2018;42:1297–1305. doi: 10.1097/PAS.0000000000001096. PubMed DOI PMC

Agaimy A, Din NU, Dermawan JK, et al. RREB1::MRTFB fusion-positive extra-glossal mesenchymal neoplasms: A series of five cases expanding their anatomic distribution and highlighting significant morphological and phenotypic diversity. Genes Chromosomes Cancer. 2023;62:5–16. doi: 10.1002/gcc.23082. PubMed DOI PMC

Dahlen A, Fletcher CD, Mertens F, et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12) Am J Pathol. 2004;164:1645–1653. doi: 10.1016/s0002-9440(10)63723-6. PubMed DOI PMC

Papke DJ, Jr, Dickson BC, Oliveira AM, et al. Distinctive nested glomoid neoplasm: clinicopathologic analysis of 20 cases of a mesenchymal neoplasm with frequent GLI1 alterations and indolent behavior. Am J Surg Pathol. 2023;47:12–24. doi: 10.1097/PAS.0000000000001979. PubMed DOI

Agaram NP, Zhang L, Sung YS, et al. GLI1-amplifications expand the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol. 2019;32:1617–1626. doi: 10.1038/s41379-019-0293-x. PubMed DOI PMC

Parrack PH, Marino-Enriquez A, Fletcher CDM, et al. GLI1 Immunohistochemistry Distinguishes Mesenchymal Neoplasms With GLI1 Alterations From Morphologic Mimics. Am J Surg Pathol. 2023;47:453–460. doi: 10.1097/PAS.0000000000002018. PubMed DOI

Xu B, Chang K, Folpe AL, et al. Head and Neck Mesenchymal Neoplasms With GLI1 Gene Alterations: A Pathologic Entity With Distinct Histologic Features and Potential for Distant Metastasis. Am J Surg Pathol. 2020;44:729–737. doi: 10.1097/PAS.0000000000001439. PubMed DOI PMC

Antonescu CR, Agaram NP, Sung YS, et al. A Distinct Malignant Epithelioid Neoplasm With GLI1 Gene Rearrangements, Frequent S100 Protein Expression, and Metastatic Potential: Expanding the Spectrum of Pathologic Entities With ACTB/MALAT1/PTCH1-GLI1 Fusions. Am J Surg Pathol. 2018;42:553–560. doi: 10.1097/PAS.0000000000001010. PubMed DOI PMC

WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours. Lyon (France): International Agency for Research on Cancer; 2020. (WHO classification of tumours series, 5th ed.; vol. 3). https://publications.iarc.fr/588.

Leiner J, Le Loarer F. The current landscape of rhabdomyosarcomas: an update. Virchows Arch. 2020;476:97–108. doi: 10.1007/s00428-019-02676-9. PubMed DOI

Mosquera JM, Sboner A, Zhang L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 2013;52:538–550. doi: 10.1002/gcc.22050. PubMed DOI PMC

Alaggio R, Zhang L, Sung YS, et al. A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol. 2016;40:224–235. doi: 10.1097/PAS.0000000000000538. PubMed DOI PMC

Agaimy A, Dermawan JK, Leong I, et al. Recurrent VGLL3 fusions define a distinctive subset of spindle cell rhabdomyosarcoma with an indolent clinical course and striking predilection for the head and neck. Genes Chromosomes Cancer. 2022;61:701–709. doi: 10.1002/gcc.23083. PubMed DOI PMC

Watson S, Perrin V, Guillemot D, et al. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol. 2018;245:29–40. doi: 10.1002/path.5053. PubMed DOI

Le Loarer F, Cleven AHG, Bouvier C, et al. A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod Pathol. 2020;33:404–419. doi: 10.1038/s41379-019-0323-8. PubMed DOI

Dehner CA, Broski SM, Meis JM, et al. Fusion-driven Spindle Cell Rhabdomyosarcomas of Bone and Soft Tissue: A Clinicopathologic and Molecular Genetic Study of 25 Cases. Mod Pathol. 2023;36:100271. doi: 10.1016/j.modpat.2023.100271. PubMed DOI

Brunac AC, Laprie A, Castex MP, et al. The combination of radiotherapy and ALK inhibitors is effective in the treatment of intraosseous rhabdomyosarcoma with FUS-TFCP2 fusion transcript. Pediatr Blood Cancer. 2020;67:e28185. doi: 10.1002/pbc.28185. PubMed DOI

Valerio E, Furtado Costa JL, Perez Fraile NM, et al. Intraosseous Spindle Cell/Epithelioid Rhabdomyosarcoma with TFCP2 Rearrangement: A Recent Recognized Subtype with Partial Response to Alectinib. Int J Surg Pathol. 2023;31:861–865. doi: 10.1177/10668969221140397. PubMed DOI

Bridge JA, Fidler ME, Neff JR, et al. Adamantinoma-like Ewing's sarcoma: genomic confirmation, phenotypic drift. Am J Surg Pathol. 1999;23:159–165. doi: 10.1097/00000478-199902000-00004. PubMed DOI

Rooper LM, Bishop JA. Soft Tissue Special Issue: Adamantinoma-Like Ewing Sarcoma of the Head and Neck: A Practical Review of a Challenging Emerging Entity. Head Neck Pathol. 2020;14:59–69. doi: 10.1007/s12105-019-01098-y. PubMed DOI PMC

Xu B, Suurmeijer AJH, Agaram NP, et al. Head and Neck Mesenchymal Tumors with Kinase Fusions: A Report of 15 Cases With Emphasis on Wide Anatomic Distribution and Diverse Histologic Appearance. Am J Surg Pathol. 2023;47:248–258. doi: 10.1097/PAS.0000000000001982. PubMed DOI PMC

Davis JL, Al-Ibraheemi A, Rudzinski ER, et al. Mesenchymal neoplasms with NTRK and other kinase gene alterations. Histopathology. 2022;80:4–18. doi: 10.1111/his.14443. PubMed DOI

Solomon JP, Linkov I, Rosado A, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33:38–46. doi: 10.1038/s41379-019-0324-7. PubMed DOI PMC

Koshyk O, Dehner CA, van den Hout M, et al. EWSR1::POU2AF3(COLCA2) Sarcoma: An aggressive, polyphenotypic sarcoma with a head and neck predilection. Mod Pathol. 2023;36:100337. doi: 10.1016/j.modpat.2023.100337. PubMed DOI

Hiemenz MC, Kaur J, Kuang Z, et al. POU2AF3-rearranged sarcomas: A novel tumor defined by fusions of EWSR1 or FUS to a gene formerly designated COLCA2 Genes Chromosomes. Cancer. 2023;62:460–470. doi: 10.1002/gcc.23136. PubMed DOI

Agaimy A, Baneckova M, De Almeida J, et al. Recurrent EWSR1::COLCA2 Fusions Define a Novel Sarcoma With Spindle/Round Cell Morphology and Strong Predilection for the sinonasal tract. Am J Surg Pathol. 2023;47:361–369. doi: 10.1097/PAS.0000000000002000. PubMed DOI

Muller E, Beleites E. The basaloid squamous cell carcinoma of the nasopharynx. Rhinology. 2000;38:208–211. PubMed

Zhang J, Shu C, Song Y, et al. Epstein-Barr virus DNA level as a novel prognostic factor in nasopharyngeal carcinoma: A meta-analysis. Medicine (Baltimore) 2016;95:e5130. doi: 10.1097/MD.0000000000005130. PubMed DOI PMC

Ruuskanen M, Irjala H, Minn H, et al. Epstein-Barr virus and human papillomaviruses as favorable prognostic factors in nasopharyngeal carcinoma: A nationwide study in Finland. Head Neck. 2019;41:349–357. doi: 10.1002/hed.25450. PubMed DOI PMC

Lin Z, Khong B, Kwok S, et al. Human papillomavirus 16 detected in nasopharyngeal carcinomas in white Americans but not in endemic Southern Chinese patients. Head Neck. 2014;36:709–714. doi: 10.1002/hed.23362. PubMed DOI PMC

Carlander AF, Jakobsen KK, Bendtsen SK, et al. A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses. 2021;13:1326. doi: 10.3390/v13071326. PubMed DOI PMC

Mashiana SS, Navale P, Khandakar B, et al. Human papillomavirus genotype distribution in head and neck cancer: Informing developing strategies for cancer prevention, diagnosis, treatment and surveillance. Oral Oncol. 2021;113:105109. doi: 10.1016/j.oraloncology.2020.105109. PubMed DOI

Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35. doi: 10.1056/NEJMoa0912217. PubMed DOI PMC

O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17:440–451. doi: 10.1016/S1470-2045(15)00560-4. PubMed DOI

Westra WH. The morphologic profile of HPV-related head and neck squamous carcinoma: implications for diagnosis, prognosis, and clinical management. Head Neck Pathol. 2012;6 Suppl 1:S48–54. doi: 10.1007/s12105-012-0371-6. PubMed DOI PMC

Lewis JS, Jr, Beadle B, Bishop JA, et al. Human Papillomavirus Testing in Head and Neck Carcinomas: Guideline From the College of American Pathologists. Arch Pathol Lab Med. 2018;142:559–597. doi: 10.5858/arpa.2017-0286-CP. PubMed DOI

Kim SJ, Choi JY, Hyun SH, et al. Risk stratification on the basis of Deauville score on PET-CT and the presence of Epstein-Barr virus DNA after completion of primary treatment for extranodal natural killer/T-cell lymphoma, nasal type: a multicentre, retrospective analysis. Lancet Haematol. 2015;2:e66–74. doi: 10.1016/S2352-3026(15)00002-2. PubMed DOI

Hussein K, Rath B, Ludewig B, et al. Clinico-pathological characteristics of different types of immunodeficiency-associated smooth muscle tumours. Eur J Cancer. 2014;50:2417–2424. doi: 10.1016/j.ejca.2014.06.006. PubMed DOI

Dojcinov SD, Venkataraman G, Raffeld M, et al. EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34:405–417. doi: 10.1097/PAS.0b013e3181cf8622. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...