Monitoring of taurine dietary supplementation effect on parameters of Duroc boar ejaculate in summer season
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38271350
PubMed Central
PMC10810488
DOI
10.1371/journal.pone.0288317
PII: PONE-D-23-07246
Knihovny.cz E-zdroje
- MeSH
- analýza spermatu MeSH
- motilita spermií * MeSH
- potravní doplňky MeSH
- prasata MeSH
- roční období MeSH
- sperma * MeSH
- spermie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this experiment was to find out whether the taurine supplementation in daily ration had an effect on quantity or quality of Duroc boar ejaculate. The experiment duration was from June to August, when it could assumed the possible occurrence of heat stress. For the study was chosen 12 Duroc boars of approximately the same age and condition. The control group of 6 Duroc boars was fed only by basic diet and the experimental group of 6 Duroc boars was fed by the same basic diet with supplementation of 15 g taurine/boar/day. Ejaculate was collected once a week by hand glowed technique. From ejaculate parameters were monitored volume of ejaculate, sperm concentration, total amount of sperm, morphologically abnormal sperm, taurine concentration and GSH/GSSH concentration. From microscopic analysis, results were statistically significant in motility in June and July (P<0.05). In biochemical results, a significant difference (P<0.05) has been found between the experimental groups in the concentrations of taurine as well as GSH/GSSG in ejaculate which indicates the effect of heat stress on boars during the experimental period.
Zobrazit více v PubMed
Frydrichová S, Lustyková A, Lipenský J, Rozkot M. Effect of Season on Boar Semen Quality and Enzymatic Activity of Aspartate Aminotransferase. Research in Pig Breeding. 2015;9. Available: http://www.respigbreed.cz/2015/1/2.pdf.
Sumena KB, Lucy KM, Chungath JJ, Ashok N, Harshan KR. Regional histology of the subcutaneous tissue and the sweat glands of Large White Yorkshire pigs. Tamilnadu Journal of Veterinary and Animal Sciences. 2010;6: 128–135. Available: https://www.cabdirect.org/cabdirect/abstract/20103225066.
Ross J, Hale B, Gabler N, Rhoads R, Keating A, Baumgard L. Physiological consequences of heat stress in pigs. Animal Production Science. 2015;55. doi: 10.1071/AN15267 DOI
Brown-Brandl TM, Eigenberg RA, Nienaber JA, Kachman SD. Thermoregulatory profile of a newer genetic line of pigs. Livestock Production Science. 2001;71: 253–260. doi: 10.1016/S0301-6226(01)00184-1 DOI
Gadd J. Modern pig production technology: a practical guide to profit. Nottingham: Nottingham university press; 2011.
Peña ST, Stone F, Gummow B, Parker AJ, Paris DBBP. Tropical summer induces DNA fragmentation in boar spermatozoa: implications for evaluating seasonal infertility. Reprod Fertil Dev. 2019;31: 590–601. doi: 10.1071/RD18159 PubMed DOI
Hansen PJ. Effects of heat stress on mammalian reproduction. Phil Trans R Soc B. 2009;364: 3341–3350. doi: 10.1098/rstb.2009.0131 PubMed DOI PMC
Patience JF, Umboh JF, Chaplin RK, Nyachoti CM. Nutritional and physiological responses of growing pigs exposed to a diurnal pattern of heat stress. Livestock Production Science. 2005;96: 205–214. doi: 10.1016/j.livprodsci.2005.01.012 DOI
Půlkrábek J. Chov prasat. Profi Press; 2005. Available: https://www.databazeknih.cz/knihy/chov-prasat-361694
Horky P, Tmejova K, Kensova R, Cernei N, Kudr J, Ruttkay-Nedecky B, et al.. Effect of Heat Stress on the Antioxidant Activity of Boar Ejaculate Revealed by Spectroscopic and Electrochemical Methods. Int J Electrochem Sci. 2015;10.
Zeman L. Výživa a krmení hospodářských zvířat. Praha: Profi Press; 2006. Available: https://katalog.mendelu.cz/records/950c49cf-5bba-4c05-8d07-617ea6d7727f.
Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008;1: 15–24. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715191/. doi: 10.4161/oxim.1.1.6843 PubMed DOI PMC
Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295: C849–868. doi: 10.1152/ajpcell.00283.2008 PubMed DOI PMC
Štípek S. Antioxidanty a volné radikály ve zdraví a v nemoci. Praha: Grada; 2000.
Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18: 872–879. doi: 10.1016/s0899-9007(02)00916-4 PubMed DOI
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 2007;39: 44–84. doi: 10.1016/j.biocel.2006.07.001 PubMed DOI
Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8: 851–862. doi: 10.2174/0929867013373039 PubMed DOI
Žaja IŽ, Samardžija M, Vince S, Sluganović A, Strelec S, Šuran J, et al.. Antioxidant protection and lipid peroxidation in testes and different parts of epididymis in boars. Theriogenology. 2016;86: 2194–2201. doi: 10.1016/j.theriogenology.2016.07.008 PubMed DOI
Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, et al.. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4: 1247–1253. doi: 10.3892/ol.2012.931 PubMed DOI PMC
Yang J, Wu G, Feng Y, Lv Q, Lin S, Hu J. Effects of taurine on male reproduction in rats of different ages. Journal of Biomedical Science. 2010;17: S9. doi: 10.1186/1423-0127-17-S1-S9 PubMed DOI PMC
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24: 539–577. doi: 10.1146/annurev.nutr.24.012003.132418 PubMed DOI
Holmes RP, Goodman HO, Shihabi ZK, Jarow JP. The taurine and hypotaurine content of human semen. J Androl. 1992;13: 289–292. PubMed
Lobo MVT, Alonso FJM, del Río RM. Immunohistochemical Localization of Taurine in the Male Reproductive Organs of the Rat. J Histochem Cytochem. 2000;48: 313–320. doi: 10.1177/002215540004800301 PubMed DOI
Vasil’ev AN, Deriabin PG, Galegov GA. [Antiviral activity of recombinant interferon-alpha-2b in combination with certain antioxidant]. Antibiot Khimioter. 2011;56: 27–32. PubMed
Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. In: Marcinkiewicz J, Schaffer SW, editors. Taurine 9. Cham: Springer International Publishing; 2015. pp. 581–596. doi: 10.1007/978-3-319-15126-7_47 PubMed DOI
Taziki S, Sattari MR, Eghbal MA. Mechanisms of Trazodone-Induced Cytotoxicity and the Protective Effects of Melatonin and/or Taurine toward Freshly Isolated Rat Hepatocytes. Journal of Biochemical and Molecular Toxicology. 2013;27: 457–462. doi: 10.1002/jbt.21509 PubMed DOI
Chhillar S, Singh VK, Kumar R, Atreja SK. Effects of Taurine or Trehalose supplementation on functional competence of cryopreserved Karan Fries semen. Animal Reproduction Science. 2012;135: 1–7. doi: 10.1016/j.anireprosci.2012.08.029 PubMed DOI
Slanina T, Miškeje M, Tirpák F, Błaszczyk M, Stawarz R, Massányi P. Effect of taurine on turkey (Meleagris gallopavo) spermatozoa viability and motility. Czech J Anim Sci. 2018;63: 127–135. doi: 10.17221/79/2017-CJAS DOI
Waldron M, Patterson SD, Tallent J, Jeffries O. The Effects of an Oral Taurine Dose and Supplementation Period on Endurance Exercise Performance in Humans: A Meta-Analysis. Sports Med. 2018;48: 1247–1253. doi: 10.1007/s40279-018-0896-2 PubMed DOI
Kurtz JA, VanDusseldorp TA, Doyle JA, Otis JS. Taurine in sports and exercise. J Int Soc Sports Nutr. 2021;18: 39. doi: 10.1186/s12970-021-00438-0 PubMed DOI PMC
Lovercamp KW, Stewart KR, Lin X, Flowers WL. Effect of dietary selenium on boar sperm quality. Anim Reprod Sci. 2013;138: 268–275. doi: 10.1016/j.anireprosci.2013.02.016 PubMed DOI
Nejdl L, Sochor J, Zitka O, Cernei N, Ruttkay-Nedecky B, Kopel P, et al.. Spectrometric and Chromatographic Study of Reactive Oxidants Hypochlorous and Hypobromous Acids and Their Interactions with Taurine. Chromatographia. 2013;76: 363–373. doi: 10.1007/s10337-012-2354-x DOI
Kominkova M, Horky P, Cernei N, Tmejova K, Ruttkay B, Guran R, et al.. Optimization of the Glutathione Detection by High Performance Liquid Chromatography with Electrochemical Detection in the Brain and Liver of Rats Fed with Taurine. Int J Electrochem Sci. 2015;10.
Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, et al.. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. Journal of Chromatography A. 2005;1084: 134–144. doi: 10.1016/j.chroma.2005.06.019 PubMed DOI
Horky P, Jancikova P, Sochor J, Hynek D, Chavis GJ, Ruttkay-Nedecky B, et al.. Effect of Organic and Inorganic Form of Selenium on Antioxidant Status of Breeding Boars Ejaculate Revealed by Electrochemistry. Int J Electrochem Sci. 2012;7.
Horky P. Influence of Increased Dietary Selenium on Glutathione Peroxidase Activity and Glutathione Concentration in Erythrocytes of Lactating Sows. Annals of Animal Science. 2014;14. doi: 10.2478/aoas-2014-0056 DOI
Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol (1985). 2008;104: 853–860. doi: 10.1152/japplphysiol.00953.2007 PubMed DOI
Wen C, Li F, Guo Q, Zhang L, Duan Y, Wang W, et al.. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol. 2020;11: 56. doi: 10.1186/s40104-020-00463-0 PubMed DOI PMC
Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42: 2223–2232. doi: 10.1007/s00726-011-0962-7 PubMed DOI
Lourenco R, Camilo M. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutrición hospitalaria: organo oficial de la Sociedad Española de Nutrición Parenteral y Enteral. 2002;17: 262–70. PubMed
Das J, Ghosh J, Manna P, Sil PC. Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology. 2010;269: 24–34. doi: 10.1016/j.tox.2010.01.003 PubMed DOI
Asano A, Roman HB, Hirschberger LL, Ushiyama A, Nelson JL, Hinchman MM, et al.. Cysteine dioxygenase is essential for mouse sperm osmoadaptation and male fertility. FEBS J. 2018;285: 1827–1839. doi: 10.1111/febs.14449 PubMed DOI PMC
Rezaee-Tazangi F, Zeidooni L, Rafiee Z, Fakhredini F, Kalantari H, Alidadi H, et al.. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Reprod. 2020;24: 428–435. doi: 10.5935/1518-0557.20200017 PubMed DOI PMC
Folgerø T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8: 1863–1868. doi: 10.1093/oxfordjournals.humrep.a137950 PubMed DOI
Bucak MN, Ateşşahin A, Varişli O, Yüce A, Tekin N, Akçay A. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen Microscopic and oxidative stress parameters after freeze-thawing process. Theriogenology. 2007;67: 1060–1067. doi: 10.1016/j.theriogenology.2006.12.004 PubMed DOI
Martins-Bessa A, Rocha A, Mayenco-Aguirre A. Incorporation of taurine and hypotaurine did not improve the efficiency of the Uppsala Equex II extender for dog semen freezing. Theriogenology. 2007;68: 1088–1096. doi: 10.1016/j.theriogenology.2007.07.015 PubMed DOI
Dorado J, Acha D, Ortiz I, Gálvez MJ, Carrasco JJ, Gómez-Arrones V, et al.. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved Andalusian donkey (Equus asinus) spermatozoa. Anim Reprod Sci. 2014;146: 79–88. doi: 10.1016/j.anireprosci.2014.02.009 PubMed DOI
Paál D, Strejček F, Tvrdá E, Vašíček J, Baláži A, Chrenek P, et al.. Taurine does not improve the quality of short-term stored rabbit spermatozoa in vitro. Reprod Dom Anim. 2017;52: 1046–1051. doi: 10.1111/rda.13022 PubMed DOI
FangFang L, ChaoQun J, YuJin Z, LiLi Z, Yuan G, Ling M, et al.. Effect of dietary taurine on semen quality, serum hormone content and seminal plasma antioxidant capability of breeding boars. Chinese Journal of Animal Nutrition. 2016;28: 1122–1128. Available: https://www.cabdirect.org/cabdirect/abstract/20163189161.