EEG-vigilance regulation is associated with and predicts ketamine response in major depressive disorder
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R279-2018-1145
Lundbeckfonden (Lundbeck Foundation)
R279-2018-1145
Lundbeckfonden (Lundbeck Foundation)
19-0219
Augustinus Fonden (Augustinus Foundation)
SRG2023-00040-ICI
Universidade de Macau (University of Macau)
PubMed
38272875
PubMed Central
PMC10810879
DOI
10.1038/s41398-024-02761-x
PII: 10.1038/s41398-024-02761-x
Knihovny.cz E-zdroje
- MeSH
- bdění MeSH
- depresivní porucha unipolární * farmakoterapie MeSH
- elektroencefalografie MeSH
- ketamin * farmakologie terapeutické užití MeSH
- lidé MeSH
- mozek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ketamin * MeSH
Ketamine offers promising new therapeutic options for difficult-to-treat depression. The efficacy of treatment response, including ketamine, has been intricately linked to EEG measures of vigilance. This research investigated the interplay between intravenous ketamine and alterations in brain arousal, quantified through EEG vigilance assessments in two distinct cohorts of depressed patients (original dataset: n = 24; testing dataset: n = 24). Clinical response was defined as a decrease from baseline of >33% on the Montgomery-Åsberg Depression Rating Scale (MADRS) 24 h after infusion. EEG recordings were obtained pre-, start-, end- and 24 h post- infusion, and the resting EEG was automatically scored using the Vigilance Algorithm Leipzig (VIGALL). Relative to placebo (sodium chloride 0.9%), ketamine increased the amount of low-vigilance stage B1 at end-infusion. This increase in B1 was positively related to serum concentrations of ketamine, but not to norketamine, and was independent of clinical response. In contrast, treatment responders showed a distinct EEG pattern characterized by a decrease in high-vigilance stage A1 and an increase in low-vigilance B2/3, regardless of whether placebo or ketamine had been given. Furthermore, pretreatment EEG differed between responders and non-responders with responders showing a higher percentage of stage A1 (53% vs. 21%). The logistic regression fitted on the percent of A1 stages was able to predict treatment outcomes in the testing dataset with an area under the ROC curve of 0.7. Ketamine affects EEG vigilance in a distinct pattern observed only in responders. Consequently, the percentage of pretreatment stage A1 shows significant potential as a predictive biomarker of treatment response.Clinical Trials Registration: https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-000952-17/CZ Registration number: EudraCT Number: 2013-000952-17.
Center for Cognitive and Brain Sciences University of Macau Taipa Macau SAR China
Charles University 3rd Faculty of Medicine Prague Czech Republic
Epilepsy Clinic University Hospital Rigshospitalet Copenhagen Denmark
Hospital for Psychiatry Psychotherapy and Psychosomatic; University Zurich Zurich Switzerland
National Institute of Mental Health Klecany Czech Republic
Neurobiology Research Unit University Hospital Rigshospitalet Copenhagen Denmark
Zobrazit více v PubMed
Marcantoni WS, Akoumba BS, Wassef M, Mayrand J, Lai H, Richard-Devantoy S, et al. A systematic review and meta-analysis of the efficacy of intravenous ketamine infusion for treatment resistant depression: January 2009 – January 2019. J Affect Disord. 2020;277:831–41. doi: 10.1016/j.jad.2020.09.007. PubMed DOI
Bahji A, Vazquez GH, Zarate CA. Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J Affect Disord. 2021;278:542–55. doi: 10.1016/j.jad.2020.09.071. PubMed DOI PMC
Zhang MW, Harris KM, Ho RC. Is Off-label repeat prescription of ketamine as a rapid antidepressant safe? Controversies, ethical concerns, and legal implications. BMC Med Ethics. 2016;17:4. doi: 10.1186/s12910-016-0087-3. PubMed DOI PMC
Arns M, van Dijk H, Luykx JJ, van Wingen G, Olbrich S. Stratified psychiatry: tomorrow’s precision psychiatry? Eur Neuropsychopharmacol. 2022;55:14–9. doi: 10.1016/j.euroneuro.2021.10.863. PubMed DOI
Niciu MJ, Luckenbaugh DA, Ionescu DF, Richards EM, Vande Voort JL, Ballard ED, et al. Ketamine’s antidepressant efficacy is extended for at least four weeks in subjects with a family history of an alcohol use disorder. Int J Neuropsychopharmacol. 2015;18. 10.1093/ijnp/pyu039. PubMed PMC
Lowe DJE, Müller DJ, George TP. Ketamine treatment in depression: a systematic review of clinical characteristics predicting symptom improvement. Curr Top Med Chem. 2020;20:1398–414. doi: 10.2174/1568026620666200423094423. PubMed DOI
Romeo B, Choucha W, Fossati P, Rotge J-Y. Clinical and biological predictors of ketamine response in treatment-resistant major depression: Review. Encephale. 2017;43:354–62. PubMed
Rong C, Park C, Rosenblat J, Subramaniapillai M, Zuckerman H, Fus D, et al. Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. Int J Environ Res Public Health. 2018;15:771. doi: 10.3390/ijerph15040771. PubMed DOI PMC
Bao Z, Zhao X, Li J, Zhang G, Wu H, Ning Y, et al. Prediction of repeated-dose intravenous ketamine response in major depressive disorder using the GWAS-based machine learning approach. J Psychiatr Res. 2021;138:284–90. doi: 10.1016/j.jpsychires.2021.04.014. PubMed DOI
Acevedo-Diaz EE, Cavanaugh GW, Greenstein D, Kraus C, Kadriu B, Park L, et al. Can ‘floating’ predict treatment response to ketamine? Data from three randomized trials of individuals with treatment-resistant depression. J Psychiatr Res. 2020;130:280–5. doi: 10.1016/j.jpsychires.2020.06.012. PubMed DOI PMC
Niciu MJ, Shovestul BJ, Jaso BA, Farmer C, Luckenbaugh DA, Brutsche NE, et al. Features of dissociation differentially predict antidepressant response to ketamine in treatment-resistant depression. J Affect Disord. 2018;232:310–5. doi: 10.1016/j.jad.2018.02.049. PubMed DOI PMC
Gärtner M, Aust S, Bajbouj M, Fan Y, Wingenfeld K, Otte C, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol. 2019;29:501–8. doi: 10.1016/j.euroneuro.2019.02.008. PubMed DOI
Nugent AC, Farmer C, Evans JW, Snider SL, Banerjee D, Zarate CA. Multimodal imaging reveals a complex pattern of dysfunction in corticolimbic pathways in major depressive disorder. Hum Brain Mapp. 2019;40:3940–50. doi: 10.1002/hbm.24679. PubMed DOI PMC
Chen M-H, Lin W-C, Tu P-C, Li C-T, Bai Y-M, Tsai S-J, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord. 2019;259:15–20. doi: 10.1016/j.jad.2019.08.022. PubMed DOI
Alario AA, Niciu MJ. Biomarkers of ketamine’s antidepressant effect: a clinical review of genetics, functional connectivity, and neurophysiology. Chronic Stress. 2021;5:247054702110142. doi: 10.1177/24705470211014210. PubMed DOI PMC
Head H. The conception of nervous and mental energy1 (II) Br J Psychol Gen Sect. 1923;14:126–47. doi: 10.1111/j.2044-8295.1923.tb00122.x. DOI
Loomis AL, Harvey EN, Hobart GA. Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol. 1937;21:127–44. doi: 10.1037/h0057431. DOI
Roth B. The clinical and theoretical importance of EEG rhythms corresponding to states of lowered vigilance. Electroencephalogr Clin Neurophysiol. 1961;13:395–9. doi: 10.1016/0013-4694(61)90008-6. PubMed DOI
Bente D. Vigilanz, dissoziative Vigilanzverschiebung und Insuffizienz des Vigilitätstonus. In: Begleitwirkungen Und Mißerfolge Der Psychiatrischen Pharmakotherapie. Thieme: Stuttgart, 1964. pp 13–28.
Hegerl U, Hensch T. The vigilance regulation model of affective disorders and ADHD. Neurosci Biobehav Rev. 2014;44:45–57. doi: 10.1016/j.neubiorev.2012.10.008. PubMed DOI
Olbrich S, Sander C, Minkwitz J, Chittka T, Mergl R, Hegerl U, et al. EEG vigilance regulation patterns and their discriminative power to separate patients with major depression from healthy controls. Neuropsychobiology. 2012;65:188–94. doi: 10.1159/000337000. PubMed DOI
Hegerl U, Wilk K, Olbrich S, Schoenknecht P, Sander C. Hyperstable regulation of vigilance in patients with major depressive disorder. World J Biol Psychiatry. 2012;13:436–46. doi: 10.3109/15622975.2011.579164. PubMed DOI
Olbrich S, Fischer MM, Sander C, Hegerl U, Wirtz H, Bosse‐Henck A. Objective markers for sleep propensity: comparison between the Multiple Sleep Latency Test and the Vigilance Algorithm Leipzig. J Sleep Res. 2015;24:450–7. doi: 10.1111/jsr.12290. PubMed DOI
Olbrich S, Tränkner A, Surova G, Gevirtz R, Gordon E, Hegerl U, et al. CNS- and ANS-arousal predict response to antidepressant medication: findings from the randomized iSPOT-D study. J Psychiatr Res. 2016;73:108–15. doi: 10.1016/j.jpsychires.2015.12.001. PubMed DOI
Ip C-T, Ganz M, Dam VH, Ozenne B, Rüesch A, Köhler-Forsberg K, et al. NeuroPharm study: EEG wakefulness regulation as a biomarker in MDD. J Psychiatr Res. 2021;141:57–65. doi: 10.1016/j.jpsychires.2021.06.021. PubMed DOI
Corssen G, Domino EF. Dissociative anesthesia. Anesth Analg. 1966;45:29–40. PubMed
Haaf M, Curic S, Rauh J, Steinmann S, Mulert C, Leicht G. Opposite modulation of the NMDA receptor by glycine and S-ketamine and the effects on resting state EEG gamma activity: new insights into the glutamate hypothesis of schizophrenia. Int J Mol Sci. 2023;24:1913. doi: 10.3390/ijms24031913. PubMed DOI PMC
Bianciardi B, Uhlhaas PJ. Do NMDA-R antagonists re-create patterns of spontaneous gamma-band activity in schizophrenia? A systematic review and perspective. Neurosci Biobehav Rev. 2021;124:308–23. doi: 10.1016/j.neubiorev.2021.02.005. PubMed DOI
Hatzinger M, Hemmeter UM, Brand S, Ising M, Holsboer-Trachsler E. Electroencephalographic sleep profiles in treatment course and long-term outcome of major depression: association with DEX/CRH-test response. J Psychiatr Res. 2004;38:453–65. doi: 10.1016/j.jpsychires.2004.01.010. PubMed DOI
Lovato N, Gradisar M. A meta-analysis and model of the relationship between sleep and depression in adolescents: recommendations for future research and clinical practice. Sleep Med Rev. 2014;18:521–9. doi: 10.1016/j.smrv.2014.03.006. PubMed DOI
Steiger A, Pawlowski M. Depression and sleep. Int J Mol Sci. 2019;20:607. doi: 10.3390/ijms20030607. PubMed DOI PMC
Brunoni AR, Kemp AH, Dantas EM, Goulart AC, Nunes MA, Boggio PS, et al. Heart rate variability is a trait marker of major depressive disorder: evidence from the sertraline vs. electric current therapy to treat depression clinical study. Int J Neuropsychopharmacol. 2013;16:1937–49. doi: 10.1017/S1461145713000497. PubMed DOI
Jain FA, Cook IA, Leuchter AF, Hunter AM, Davydov DM, Ottaviani C, et al. Heart rate variability and treatment outcome in major depression: a pilot study. Int J Psychophysiol. 2014;93:204–10. doi: 10.1016/j.ijpsycho.2014.04.006. PubMed DOI
Antonijevic I, Antonijevic I. HPA axis and sleep: Identifying subtypes of major depression. Stress. 2008;11:15–27. doi: 10.1080/10253890701378967. PubMed DOI
Rao U, Hammen CL, Poland RE. Risk markers for depression in adolescents: sleep and HPA measures. Neuropsychopharmacology. 2009;34:1936–45. doi: 10.1038/npp.2009.27. PubMed DOI PMC
Rotenberg VS, Shamir E, Barak Y, Indursky P, Kayumov L, Mark M. REM sleep latency and wakefulness in the first sleep cycle as markers of major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:1211–5. doi: 10.1016/S0278-5846(02)00216-6. PubMed DOI
Röschke J, Mann K. The sleep EEG’s microstructure in depression: alterations of the phase relations between EEG rhythms during REM and NREM sleep. Sleep Med. 2002;3:501–5. doi: 10.1016/S1389-9457(02)00134-X. PubMed DOI
Bente D. EEG aspects of waking-sleep behaviour and the chronophysiology of endogenous depressions. Arzneimittelforschung. 1976;26:1058–61. PubMed
Sander C, Arns M, Olbrich S, Hegerl U. EEG-vigilance and response to stimulants in paediatric patients with attention deficit/hyperactivity disorder. Clin Neurophysiol. 2010;121:1511–8. doi: 10.1016/j.clinph.2010.03.021. PubMed DOI
Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre- and post-treatment findings. Biol Psychiatry. 2008;63:1171–7. doi: 10.1016/j.biopsych.2007.10.009. PubMed DOI PMC
Knott V, Mahoney C, Kennedy S, Evans K. Pre-treatment EEG and it’s relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry. 2000;33:201–5. doi: 10.1055/s-2000-8356. PubMed DOI
Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, et al. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry. 2019;24:1040–52. doi: 10.1038/s41380-018-0028-2. PubMed DOI PMC
Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol Lett. 2013;34:287–93. PubMed
Meyer T, Brunovsky M, Horacek J, Novak T, Andrashko V, Seifritz E, et al. Predictive value of heart rate in treatment of major depression with ketamine in two controlled trials. Clin Neurophysiol. 2021;132:1339–46. doi: 10.1016/j.clinph.2021.01.030. PubMed DOI
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33. PubMed
Jödicke J, Olbrich S, Sander C, Minkwitz J, Chittka T, Himmerich H, et al. Separation of low-voltage EEG-activity during mental activation from that during transition to drowsiness. Brain Topogr. 2013;26:538–46. doi: 10.1007/s10548-013-0287-9. PubMed DOI
Santamaria J, Chiappa KH. The EEG of drowsiness in normal adults. J Clin Neurophysiol. 1987;4:327–82. doi: 10.1097/00004691-198710000-00002. PubMed DOI
Rüesch A, Ip C-T, Bankwitz A, Villar de Araujo T, Hörmann C, Adank A, et al. EEG wakefulness regulation in transdiagnostic patients after a recent suicide attempt. Clin Neurophysiol. 2023. 10.1016/j.clinph.2023.08.018. PubMed
Lavender E, Hirasawa-Fujita M, Domino EF. Ketamine’s dose related multiple mechanisms of actions: dissociative anesthetic to rapid antidepressant. Behav Brain Res. 2020;390:112631. doi: 10.1016/j.bbr.2020.112631. PubMed DOI
de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, et al. Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front Pharmacol. 2016;7. 10.3389/fphar.2016.00348. PubMed PMC
Machado RA, Patel J, Elsayed MS. The role of ketamine-induced beta activity in the treatment of refractory status epilepticus. Is the EEG useful to determine responder’s rate? A retrospective study. Epilepsy Behav. 2022;127:108512. doi: 10.1016/j.yebeh.2021.108512. PubMed DOI
Olbrich S, Sander C, Matschinger H, Mergl R, Trenner M, Schönknecht P, et al. Brain and Body: associations between EEG-vigilance and the autonomous nervous system activity during rest. J Psychophysiol. 2011;25:190–200. doi: 10.1027/0269-8803/a000061. DOI
Akeju O, Song AH, Hamilos AE, Pavone KJ, Flores FJ, Brown EN, et al. Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin Neurophysiol. 2016;127:2414–22. doi: 10.1016/j.clinph.2016.03.005. PubMed DOI PMC
Ballard ED, Zarate CA. The role of dissociation in ketamine’s antidepressant effects. Nat Commun. 2020;11:6431. doi: 10.1038/s41467-020-20190-4. PubMed DOI PMC
Anand A, Mathew SJ, Sanacora G, Murrough JW, Goes FS, Altinay M, et al. Ketamine versus ECT for nonpsychotic treatment-resistant major depression. N. Engl J Med. 2023;388:2315–25. doi: 10.1056/NEJMoa2302399. PubMed DOI
Huang J, Sander C, Jawinski P, Ulke C, Spada J, Hegerl U, et al. Test-retest reliability of brain arousal regulation as assessed with VIGALL 2.0. Neuropsychiatr Electrophysiol. 2015;1:13. doi: 10.1186/s40810-015-0013-9. DOI
De Gennaro L, Ferrara M, Curcio G, Cristiani R. Antero-posterior EEG changes during the wakefulness–sleep transition. Clin Neurophysiol. 2001;112:1901–11. doi: 10.1016/S1388-2457(01)00649-6. PubMed DOI
Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6. doi: 10.1038/nature17998. PubMed DOI PMC
Yang C, Shirayama Y, Zhang J, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632–e632. doi: 10.1038/tp.2015.136. PubMed DOI PMC
Williams LM, Rush AJ, Koslow SH, Wisniewski SR, Cooper NJ, Nemeroff CB, et al. International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol. Trials. 2011;12:4. doi: 10.1186/1745-6215-12-4. PubMed DOI PMC
Nofzinger E, Price J, Meltzer CC, Buysse DJ, Villemagne VL, Miewald JM. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep. Psychiatry Res Neuroimaging. 2000;98:71–91. doi: 10.1016/S0925-4927(00)00045-7. PubMed DOI
Schmidt FM, Sander C, Dietz M-E, Nowak C, Schröder T, Mergl R, et al. Brain arousal regulation as response predictor for antidepressant therapy in major depression. Sci Rep. 2017;7:45187. doi: 10.1038/srep45187. PubMed DOI PMC
Short B, Fong J, Galvez V, Shelker W, Loo CK. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry. 2018;5:65–78. doi: 10.1016/S2215-0366(17)30272-9. PubMed DOI
Sapkota A, Khurshid H, Qureshi IA, Jahan N, Went TR, Sultan W, et al. Efficacy and safety of intranasal esketamine in treatment-resistant depression in adults: a systematic review. Cureus. 2021. 10.7759/cureus.17352. PubMed PMC
Rosenblat JD, Carvalho AF, Li M, Lee Y, Subramanieapillai M, McIntyre RS. Oral ketamine for depression. J Clin Psychiatry. 2019;80. 10.4088/JCP.18r12475. PubMed
Quintana A, Morgan PG, Kruse SE, Palmiter RD, Sedensky MM. Altered anesthetic sensitivity of mice lacking Ndufs4, a subunit of mitochondrial complex I. PLoS ONE. 2012;7:e42904. doi: 10.1371/journal.pone.0042904. PubMed DOI PMC
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer New York: New York, NY, 2009. 10.1007/978-0-387-84858-7.
Hagihira S. Changes in the electroencephalogram during anaesthesia and their physiological basis. Br J Anaesth. 2015;115:i27–i31. doi: 10.1093/bja/aev212. PubMed DOI
Gent TC, Bassetti CLA, Adamantidis AR. Sleep-wake control and the thalamus. Curr Opin Neurobiol. 2018;52:188–97. doi: 10.1016/j.conb.2018.08.002. PubMed DOI
Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, et al. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage. 2009;45:319–32. doi: 10.1016/j.neuroimage.2008.11.014. PubMed DOI
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73. doi: 10.1016/0013-4694(49)90219-9. PubMed DOI
De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, et al. Trigeminal, visceral and vestibular inputs may improve cognitive functions by acting through the locus coeruleus and the ascending reticular activating system: a new hypothesis. Front Neuroanat. 2018; 11. 10.3389/fnana.2017.00130. PubMed PMC
Ulke C, Huang J, Schwabedal JTC, Surova G, Mergl R, Hensch T. Coupling and dynamics of cortical and autonomic signals are linked to central inhibition during the wake-sleep transition. Sci Rep. 2017;7:11804. doi: 10.1038/s41598-017-09513-6. PubMed DOI PMC
White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Br J Anaesth. 1985;57:197–203. doi: 10.1093/bja/57.2.197. PubMed DOI
Vlisides PE, Bel-Bahar T, Lee U, Li D, Kim H, Janke E, et al. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology. 2017;127:58–69. doi: 10.1097/ALN.0000000000001671. PubMed DOI PMC
Miyasaka M, Domino EF. Neuronal mechanisms of ketamine-induced anesthesia. Int J Neuropharmacol. 1968;7:557–73. doi: 10.1016/0028-3908(68)90067-1. PubMed DOI