Effects of nitrogen starvation on growth and biochemical composition of some microalgae species
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FGA-2021-22737
Ege Üniversitesi
PubMed
38285280
DOI
10.1007/s12223-024-01136-5
PII: 10.1007/s12223-024-01136-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemical composition, Fatty acid profile, Microalgae, Nitrogen starvation,
- MeSH
- dusík * metabolismus MeSH
- mastné kyseliny * metabolismus analýza MeSH
- mikrořasy * metabolismus růst a vývoj MeSH
- triglyceridy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- mastné kyseliny * MeSH
- triglyceridy MeSH
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Zobrazit více v PubMed
Alonso DL, Belarbi EH, Fernández-Sevilla JM, Rodríguez-Ruiz J (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54(5):461–471. https://doi.org/10.1016/S0031-9422(00)00084-4 PubMed DOI
Andrade LM, Andrade CJ, Dias M, Nascimento C, Mendes MA (2018) Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol 6(2):45–58. https://doi.org/10.15406/mojfpt.2018.06.00144 DOI
Angün P (2013) Sustainable production of biological materials for food and agricultural applications. Bilkent University (Dissertation)
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F (2021) Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res 28(32):43234–43257. https://doi.org/10.1007/s11356-021-14989-x DOI
Arif M, Li Y, El-Dalatony MM, Zhang C, Li X, Salama ES (2021) A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: an approach for biofuel generation and nutrients removal. Renew Energy 163:1973–1982. https://doi.org/10.1016/j.renene.2020.10.066 DOI
Avidan O, Malitsky S, Pick U (2021) Fatty acid production and direct acyl transfer through polar lipids control tag biosynthesis during nitrogen deprivation in the halotolerant alga Dunaliella tertiolecta. Mar Drugs 19(7):368–385. https://doi.org/10.3390/md19070368 PubMed DOI PMC
Babuskin S, Krishnan KR, Saravana Babu PA, Sivarajan M, Sukumar M (2014) Functional foods enriched with marine microalga Nannochloropsis oculata as a source of ω-3 fatty acids. Food Technol Biotechnol 52(3):292–299
Baharuddin NNDE, Aziz NS, Sohif HN, Karim WAA, Al-Obaidi JR, Basiran MN (2016) Marine microalgae flocculation using plant: the case of Nannochloropsis oculata and Moringa oleifera. Pak J Bot 48(2):831–840
Bajwa K, Bishnoi NR, Kirrolia A, Selvan ST (2018) Evaluation of nutrient stress (nitrogen, phosphorus regimes) on physio-biochemical parameters of oleaginous microalgal strains and SEM study under nutrient stress. Int J Environ Sci Nat Res 10(1):1–7. https://doi.org/10.19080/IJESNR.2018.10.555776 DOI
Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17(5):304–332. https://doi.org/10.3390/md17050304 PubMed DOI PMC
Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. John Wiley & Sons, West Sussex, pp 461–503 DOI
Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipids 3(4):259–272. https://doi.org/10.1111/j.1745-4522.1996.tb00073.x DOI
Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27:1425–1431. https://doi.org/10.1007/s10811-014-0470-8 DOI
Blair MF, Kokabian B, Gude VG (2014) Light and growth medium effect on Chlorella vulgaris biomass production. J Environ Chem Eng 2(1):665–674. https://doi.org/10.1016/j.jece.2013.11.005 DOI
Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401 DOI
Borowitzka MA (2010) Algae oils for biofuels: chemistry, physiology, and production. In: Chon Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS Press, Illinois, pp 271–289 DOI
Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer, Dordrecht DOI
Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391. https://doi.org/10.1016/0076-6879(92)13140-S DOI
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3 PubMed DOI
Brennan B, Regan F (2020) In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. Sci Total Environ 748:142464. https://doi.org/10.1016/j.scitotenv.2020.142464 PubMed DOI
Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226. https://doi.org/10.1016/j.biortech.2012.08.003 PubMed DOI
Buono S, Colucci A, Angelini A, Langellotti AL, Massa M, Martello A, Fogliano V, Dibenedetto A (2016) Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. J Appl Phycol 28:3179–3192. https://doi.org/10.1007/s10811-016-0876-6 DOI
Carboni S, Vignier J, Chiantore M, Tocher DR, Migaud H (2012) Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval development. Aquaculture 324–325:250–258. https://doi.org/10.1016/j.aquaculture.2011.10.037 DOI
Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza A, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol-C Toxicol Pharmacol 146:60–78. https://doi.org/10.1016/j.cbpc.2006.05.007 PubMed DOI
Ceron Garcia MC, Camacho FG, Mirón AS, Sevilla JMF, Chisti Y, Molina GE (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16(5):689–694
Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102(2):1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062 PubMed DOI
Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, Chen P, Yan X (2020) Effect of microalgae diet and culture system on the rearing of bivalve mollusks: nutritional properties and potential cost improvements. Algal Res 51:102076. https://doi.org/10.1016/j.algal.2020.102076 DOI
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 PubMed DOI
Cirik S, Gökpınar Ş (2008) Plankton bilgisi ve kültürü. Ege Üniversitesi, İzmir
Daroch M, Shao C, Liu Y, Geng S, Cheng JJ (2013) Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 146:192–199. https://doi.org/10.1016/j.biortech.2013.07.048 PubMed DOI
De Luca M, Pappalardo I, Limongi AR, Viviano E, Radice RP, Todisco S, Martelli G, Infantino V, Vassallo A (2021) Lipids from microalgae for cosmetic applications. Cosmetics 8(2):52. https://doi.org/10.3390/cosmetics8020052 DOI
Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101(12):4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065 PubMed DOI
Dianursanti D, Sugiarto CW, Muharam Y, Susanto BH (2018) The effect of nutrient arrangement on biomass growth and lipid content of microalgae Nannochloropsis oculata in internally illuminated bubble column photobioreactor. AIP Conf Proc 2024:020034. https://doi.org/10.1063/1.5064320 DOI
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017 DOI
Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359. https://doi.org/10.3389/fpls.2015.00359 PubMed DOI PMC
Ferro L, Gojkovic Z, Gorzsás A, Funk C (2019) Statistical methods for rapid quantification of proteins, lipids, and carbohydrates in Nordic microalgal species using ATR–FTIR spectroscopy. Molecules 24(18):3237. https://doi.org/10.3390/molecules24183237 PubMed DOI PMC
Godoy-Hernández G, Vázquez-Flota FA (2006) Growth measurements: estimation of cell division and cell expansion. Methods Mol Biol 318:51–58. https://doi.org/10.1385/1-59259-959-1:051 PubMed DOI
Gong Y, Guo X, Wan X, Zhuo L, Jianf M (2013) Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. J Basic Microbiol 53(1):29–36. https://doi.org/10.1002/jobm.201100487 PubMed DOI
González-Pérez BK, Rivas-Castillo AM, Valdez-Calderón A, Gayosso-Morales MA (2022) Microalgae as biostimulants: a new approach in agriculture. World J Microbiol Biotechnol 38(1):4. https://doi.org/10.1007/s11274-021-03192-2 DOI
Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals, 1st edn. Springer, Boston, pp 29–60 DOI
Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029 PubMed DOI
Gumus ZP, Guler E, Demir B, Barlas FB, Yavuz M, Colpankan D, Senisik AM, Teksoz S, Unak P, Coskunol H, Timur S (2015) Herbal infusions of black seed and wheat germ oil: their chemical profiles, in vitro bio-investigations and effective formulations as phyto-nanoemulsions. Colloids Surfaces B Biointerfaces 133:73–80. https://doi.org/10.1016/j.colsurfb.2015.05.044 PubMed DOI
Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture - I. The Growth Cycle J Appl Phycol 3:169–181. https://doi.org/10.1007/BF00003699 DOI
Hong SJ, Park YS, Han MA, Kim ZH, Cho BK, Lee H, Choi HK, Lee CG (2017) Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol Bioprocess Eng 22:60–67. https://doi.org/10.1007/s12257-016-0575-9 DOI
Hulatt CJ, Wijffels RH, Bolla S, Kiron V (2017) Production of fatty acids and protein by Nannochloropsis in flat-plate photobioreactors. PLoS One 12(1):e0170440. https://doi.org/10.1371/journal.pone.0170440 PubMed DOI PMC
Janssen JH, Wijffels RH, Barbosa MJ (2019) Lipid production in Nannochloropsis gaditana during nitrogen starvation. Biology (basel) 8(1):5. https://doi.org/10.3390/biology8010005 PubMed DOI
Jiang Y, Yoshida T, Quigg A (2012) Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem 54:70–77. https://doi.org/10.1016/j.plaphy.2012.02.012 PubMed DOI
Kaixian Q, Borowitzka MA (1993) Light and nitrogen deficiency effects on the growth and composition of Phaeodactylum tricornutum. Appl Biochem Biotechnol 38:93–103. https://doi.org/10.1007/BF02916415 DOI
Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2016) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520. https://doi.org/10.1007/s10811-015-0726-y DOI
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32(10):521–528. https://doi.org/10.1016/j.tibtech.2014.07.004 PubMed DOI
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V (2017) Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact 16:101. https://doi.org/10.1186/s12934-017-0716-7 PubMed DOI PMC
Larson TR, Rees TAV (1996) Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 32(3):388–393. https://doi.org/10.1111/j.0022-3646.1996.00388.x DOI
Lee SY, Kim SH, Hyun SH, Suh HW, Hong SJ, Cho BK, Lee CG, Lee H, Choi HK (2014) Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem 49(6):996–1004. https://doi.org/10.1016/j.procbio.2014.02.022 DOI
Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934. https://doi.org/10.1016/j.biortech.2019.121934 PubMed DOI
Li H, Chen S, Liao K, Lu Q, Zhou W (2021) Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state-of-the-art review. J Chem Technol Biotechnol 96(4):837–852 DOI
Li-Beisson Y, Kong F, Wang P, Lee Y, Kang BH (2021) The disassembly of lipid droplets in Chlamydomonas. New Phytol 231:1359–1364. https://doi.org/10.1111/nph.17505 PubMed DOI
Lombardi AT, Wangersky PJ (1995) Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306:1–6. https://doi.org/10.1007/BF00007853 DOI
Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S (2016) Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res 18:213–224. https://doi.org/10.1016/j.algal.2016.06.015 PubMed DOI PMC
Ma X, Liu J, Liu B, Chen T, Yang B, Chen F (2016) Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Res 16:28–35. https://doi.org/10.1016/j.algal.2016.03.005 DOI
Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears M, Dias DA, Kentish SE, Scales PJ, Botté CY, Callahan DL (2014) Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9(8):e103389. https://doi.org/10.1371/journal.pone.0103389 PubMed DOI PMC
McKennedy J, Önenç S, Pala M, Maguire J (2016) Supercritical carbon dioxide treatment of the microalgae Nannochloropsis oculata for the production of fatty acid methyl esters. J Supercrit Fluids 116:264–270. https://doi.org/10.1016/j.supflu.2016.06.003 DOI
Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang JW (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333. https://doi.org/10.1016/j.biortech.2013.12.077 PubMed DOI
Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions - I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61(1):41–51. https://doi.org/10.1016/S0031-9422(02)00216-9 PubMed DOI
Moshood TD, Nawanir G, Mahmud F (2021) Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges 5:100207. https://doi.org/10.1016/j.envc.2021.100207 DOI
Movasaghi Z, Rehman S, ur Rehman DI, (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179. https://doi.org/10.1080/05704920701829043 DOI
Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G (2021) Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 341:1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003 PubMed DOI
Nikookar K, Moradshahi A, Hosseini L (2005) Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity. Biomol Eng 22(4):141–146. https://doi.org/10.1016/j.bioeng.2005.07.001 PubMed DOI
Olofsson M, Lamela T, Nilsson E, Bergé JP, Pino VD, Uronen P, Lengrand C (2014) Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 12(4):1891–1910. https://doi.org/10.3390/md12041891 PubMed DOI PMC
Paes CRPS, Faria GR, Tinoco NAB, Castro DJFA, Barbarino E, Lourenço SO (2016) Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat Am J Aquat Res 44(2):275–292. https://doi.org/10.3856/vol44-issue2-fulltext-9 DOI
Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154. https://doi.org/10.1016/j.biortech.2014.01.025 PubMed DOI
Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190. https://doi.org/10.1016/j.algal.2016.06.007 DOI
Parsy A, Bidoire L, Saadouni M, Bahuaud M, Elan T, Périé F, Sambusiti C (2021) Impact of seasonal variations on Nannochloropsis oculata phototrophic productivity in an outdoor pilot scale raceway. Algal Res 58:102375. https://doi.org/10.1016/j.algal.2021.102375 DOI
Pick U, Avidan O (2017) Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. J Exp Bot 68(17):4939–4950. https://doi.org/10.1093/jxb/erx280 PubMed DOI PMC
Qiao H, Cong C, Sun C, Li B, Wang J, Zhang L (2016) Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452:311–317. https://doi.org/10.1016/j.aquaculture.2015.11.011 DOI
Rasdi NW, Qin JG (2015) Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27:2221–2230. https://doi.org/10.1007/s10811-014-0495-z DOI
Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30(6):972–979. https://doi.org/10.1111/j.0022-3646.1994.00972.x DOI
Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155(1–4):207–221. https://doi.org/10.1016/S0044-8486(97)00118-X DOI
Rizwan M, Mujtaba G, Memon SA, Lee K (2022) Influence of salinity and nitrogen in dark on Dunaliella tertiolecta’s lipid and carbohydrate productivity. Biofuels 13(4):475–481. https://doi.org/10.1080/17597269.2020.1762275 DOI
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033 PubMed DOI
Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Meloti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquac Soc 35(3):401–411. https://doi.org/10.1111/j.1749-7345.2004.tb00104.x DOI
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722. https://doi.org/10.1016/j.sjbs.2017.11.003 PubMed DOI
Sathyamoorthy G, Rajendran T (2022) Growth and biochemical profiling of marine microalgae Chlorella salina with response to nitrogen starvation. Mar Biol Res 18(5–6):307–314. https://doi.org/10.1080/17451000.2022.2131823 DOI
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith SAG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286. https://doi.org/10.1016/j.copbio.2010.03.005 PubMed DOI
Shah MR, Lutzu GA, Alam A, Sarker P, Chowdhury MAK, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213. https://doi.org/10.1007/s10811-017-1234-z DOI
Shan Ahamed T, Brindhadevi K, Krishnan R, Phuong TN, Alharbi SA, Chinnathambi A, Mathimani T (2022) Invivo detection of triacylglycerols through Nile red staining and quantification of fatty acids in hyper lipid producer Nannochloropsis sp. cultured under adequate nitrogen and deficient nitrogen condition. Fuel 322:124179. https://doi.org/10.1016/j.fuel.2022.124179 DOI
Shen XF, Liu JJ, Chauhan AS, Hu H, Ma LL, Lam PKS, Zeng RJ (2016) Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res 17:261–267. https://doi.org/10.1016/j.algal.2016.05.018 DOI
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11(1):1–15. https://doi.org/10.1186/1472-6750-11-7 DOI
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh V, Prasad S (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515. https://doi.org/10.3389/fmicb.2017.00515 PubMed DOI PMC
Slocombe SP, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa Á, Rad-Menéndez C, Campbell CN, Black KD, Stanley MS, Day JG (2015) Unlocking nature’s treasure-chest: screening for oleaginous algae. Sci Rep 5(1):9844. https://doi.org/10.1038/srep09844 PubMed DOI PMC
Song D, Xi B, Sun J (2016) Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. J Ocean Univ China 15:124–130. https://doi.org/10.1007/s11802-016-2797-z DOI
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. https://doi.org/10.1263/jbb.101.87 PubMed DOI
Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43(7):717–726. https://doi.org/10.1016/j.plaphy.2005.07.001 PubMed DOI
Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908. https://doi.org/10.1007/s10811-010-9609-4 DOI
Subhash GV, Rajvanshi M, Kumar GRKK, Sagaram US, Prasad V, Govindachary S, Dasgupta S (2022) Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343:126155. https://doi.org/10.1016/j.biortech.2021.126155 DOI
Tan KWM, Lin H, Shen H, Lee YK (2016) Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 6(1):37235. https://doi.org/10.1038/srep37235 PubMed DOI PMC
Tebbani S, Filali R, Lopes F, Dumur D, Pareau D (2014) CO DOI
Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnol Adv 41:107536. https://doi.org/10.1016/j.biotechadv.2020.107536 PubMed DOI
Van Vooren G, Le Grand F, Legrand J, Cuiné S, Peltier G, Pruvost J (2012) Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresour Technol 124:421–432. https://doi.org/10.1016/j.biortech.2012.08.009 PubMed DOI
Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3):393–397. https://doi.org/10.1007/s11746-998-0057-0 DOI
Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol 130:731–738. https://doi.org/10.1016/j.biortech.2012.11.116 PubMed DOI
Xu N, Zhang X, Fan X, Han L, Zeng C (2001) Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J Appl Phycol 13:463–469. https://doi.org/10.1023/A:1012537219198 DOI
Yaakob MA, Mohamed RMSR, Al-Gheethi A, Gokare RA, Ambati RR (2021) Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10(2):393. https://doi.org/10.3390/CELLS10020393 PubMed DOI PMC
Yalcin D (2020) Growth, lipid content, and fatty acid profile of freshwater cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, Hoffmann, & Komárek by using modified nutrient media. Aquac Int 28:1371–1388. https://doi.org/10.1007/s10499-020-00531-2 DOI
Yarkent Ç, Gürlek C, Oncel SS (2020) Potential of microalgal compounds in trending natural cosmetics: a review. Sustain Chem Pharm 17:100304. https://doi.org/10.1016/j.scp.2020.100304 DOI
Yodsuwan N, Sawayama S, Sirisansaneeyakul S (2017) Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric Nat Resour 51(3):190–197. https://doi.org/10.1016/j.anres.2017.02.004 DOI
Zanella L, Vianello F (2020) Microalgae of the genus Nannochloropsis: chemical composition and functional implications for human nutrition. J Funct Foods 68:103919. https://doi.org/10.1016/j.jff.2020.103919 DOI
Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2020) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga Isochrysis galbana. Egypt J Aquat Res 46(2):153–158. https://doi.org/10.1016/j.ejar.2019.11.003 DOI
Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315. https://doi.org/10.1007/s10811-005-7212-x DOI
Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298. https://doi.org/10.1016/j.biortech.2013.10.092 PubMed DOI
Zhu LD, Li ZH, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int 2016:8792548. https://doi.org/10.1155/2016/8792548 PubMed DOI PMC