Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
NC 07082.
United States Department of Agriculture
PubMed
38334666
PubMed Central
PMC10854611
DOI
10.3390/cells13030274
PII: cells13030274
Knihovny.cz E-zdroje
- Klíčová slova
- ECM, VSMCs, inflammation, vessel,
- MeSH
- aneurysma břišní aorty * metabolismus MeSH
- aorta metabolismus MeSH
- apoptóza genetika MeSH
- cytokiny metabolismus MeSH
- fenotyp MeSH
- lidé MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- cytokiny MeSH
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Department of Physiotherapy University School of Physical Education 51 612 Wroclaw Poland
Division of Anatomy and Histology University of Zielona Góra 65 046 Zielona Góra Poland
Institute of Veterinary Medicine Nicolaus Copernicus University 87 100 Torun Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC 27613 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27607 USA
Zobrazit více v PubMed
Summers K.L., Kerut E.K., Sheahan C.M., Sheahan M.G. Evaluating the Prevalence of Abdominal Aortic Aneurysms in the United States through a National Screening Database. J. Vasc. Surg. 2021;73:61–68. doi: 10.1016/j.jvs.2020.03.046. PubMed DOI
Song P., He Y., Adeloye D., Zhu Y., Ye X., Yi Q., Rahimi K., Rudan I. The Global and Regional Prevalence of Abdominal Aortic Aneurysms: A Systematic Review and Modeling Analysis. Ann. Surg. 2023;277:912–919. doi: 10.1097/SLA.0000000000005716. PubMed DOI PMC
Saw S.T., Leong B.D.K., Abdul Aziz D.A. Early Detection of Undiagnosed Abdominal Aortic Aneurysm and Sub-Aneurysmal Aortic Dilatations in Patients with High-Risk Coronary Artery Disease: The Value of Targetted Screening Programme. Vasc. Health Risk Manag. 2020;16:215–229. doi: 10.2147/VHRM.S250735. PubMed DOI PMC
Koroleva A., Kodenko M., Leonov D., Kulberg N., Lisenko N., Grigorev G., Mokienko O., Vladzymyrskyy A., Morozov S. The Effects of Hidden Aneurysms on the Posterior Flow: Computational Fluid Dynamic Study. Volume 3. Electrical and Power Engineering (REEPE); Moscow, Russia: 2021. pp. 1–4.
Safiri S., Kolahi A.-A., Naghavi M. Global, Regional and National Burden of Bladder Cancer and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. BMJ Glob. Health. 2021;6:e004128. doi: 10.1136/bmjgh-2020-004128. PubMed DOI PMC
Saracini C., Bolli P., Sticchi E., Pratesi G., Pulli R., Sofi F., Pratesi C., Gensini G.F., Abbate R., Giusti B. Polymorphisms of Genes Involved in Extracellular Matrix Remodeling and Abdominal Aortic Aneurysm. J. Vasc. Surg. 2012;55:171–179.e2. doi: 10.1016/j.jvs.2011.07.051. PubMed DOI
Jabłońska A., Zagrapan B., Neumayer C., Eilenberg W., Scheuba A., Brostjan C., Demyanets S., Klinger M., Nanobachvili J., Huk I. Polymorphisms in the IL-6 and TNF-α Gene Are Associated with an Increased Risk of Abdominal Aortic Aneurysm. Int. J. Cardiol. 2021;329:192–197. doi: 10.1016/j.ijcard.2020.12.051. PubMed DOI
Li Z., Kong W. Cellular Signaling in Abdominal Aortic Aneurysm. Cell. Signal. 2020;70:109575. doi: 10.1016/j.cellsig.2020.109575. PubMed DOI
Kugo H., Miyamoto C., Sawaragi A., Hoshino K., Hamatani Y., Matsumura S., Yoshioka Y., Moriyama T., Zaima N. Sesame Extract Attenuates the Degradation of Collagen and Elastin Fibers in the Vascular Walls of Nicotine-Administered Mice. J. Oleo Sci. 2019;68:79–85. doi: 10.5650/jos.ess18200. PubMed DOI
Li H., Xu H., Wen H., Wang H., Zhao R., Sun Y., Bai C., Ping J., Song L., Luo M., et al. Lysyl Hydroxylase 1 (LH1) Deficiency Promotes Angiotensin II (Ang II)-Induced Dissecting Abdominal Aortic Aneurysm. Theranostics. 2021;11:9587–9604. doi: 10.7150/thno.65277. PubMed DOI PMC
Lai C.-H., Chang C.-W., Lee F.-T., Kuo C.-H., Hsu J.-H., Liu C.-P., Wu H.-L., Yeh J.-L. Targeting Vascular Smooth Muscle Cell Dysfunction with Xanthine Derivative KMUP-3 Inhibits Abdominal Aortic Aneurysm in Mice. Atherosclerosis. 2020;297:16–24. doi: 10.1016/j.atherosclerosis.2020.01.029. PubMed DOI
Lu H., Du W., Ren L., Hamblin M.H., Becker R.C., Chen Y.E., Fan Y. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J. Am. Heart Assoc. 2021;10:e023601. doi: 10.1161/JAHA.121.023601. PubMed DOI PMC
Mathur A., Mohan V., Ameta D., Gaurav B., Haranahalli P. Aortic Aneurysm. J. Transl. Intern. Med. 2016;4:35–41. doi: 10.1515/jtim-2016-0008. PubMed DOI PMC
Duncan A., Maslen C., Gibson C., Hartshorne T., Farooqi A., Saratzis A., Bown M.J. Ultrasound Screening for Abdominal Aortic Aneurysm in High-Risk Women. Br. J. Surg. 2021;108:1192–1198. doi: 10.1093/bjs/znab220. PubMed DOI PMC
van de Luijtgaarden K.M., Rouwet E.V., Hoeks S.E., Stolker R.J., Verhagen H.J., Majoor-Krakauer D. Risk of Abdominal Aortic Aneurysm (AAA) among Male and Female Relatives of AAA Patients. Vasc. Med. 2017;22:112–118. doi: 10.1177/1358863X16686409. PubMed DOI
Yuan Z., Lu Y., Wei J., Wu J., Yang J., Cai Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front. Immunol. 2021;11:609161. doi: 10.3389/fimmu.2020.609161. PubMed DOI PMC
Wei L., Bu X., Wang X., Liu J., Ma A., Wang T. Global Burden of Aortic Aneurysm and Attributable Risk Factors from 1990 to 2017. Glob. Heart. 2021;16:35. doi: 10.5334/gh.920. PubMed DOI PMC
Symonides B., Śliwczyński A., Gałązka Z., Pinkas J., Gaciong Z. Geographic Disparities in the Application of Endovascular Repair of Unruptured Abdominal Aortic Aneurysm—Polish Population Analysis. Adv. Med. Sci. 2020;65:170–175. doi: 10.1016/j.advms.2020.01.003. PubMed DOI
Sun J., Deng H., Zhou Z., Xiong X., Gao L. Endothelium as a Potential Target for Treatment of Abdominal Aortic Aneurysm. Oxidative Med. Cell. Longev. 2018;2018:e6306542. doi: 10.1155/2018/6306542. PubMed DOI PMC
Komutrattananont P., Mahakkanukrauh P., Das S. Morphology of the Human Aorta and Age-Related Changes: Anatomical Facts. Anat. Cell Biol. 2019;52:109–114. doi: 10.5115/acb.2019.52.2.109. PubMed DOI PMC
Stanek A., Brożyna-Tkaczyk K., Myśliński W. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients. 2021;13:3843. doi: 10.3390/nu13113843. PubMed DOI PMC
Li H.-F., Liu H.-T., Chen P.-Y., Lin H., Tseng T.-L. Role of PVAT in Obesity-Related Cardiovascular Disease through the Buffering Activity of ATF3. iScience. 2022;25:105631. doi: 10.1016/j.isci.2022.105631. PubMed DOI PMC
Grewal N., Groot A.C.G., Lindeman J.H., Klautz A., Driessen A., Klautz R.J.M., Poelmann R.E. Normal and Abnormal Development of the Aortic Valve and Ascending Aortic Wall: A Comprehensive Overview of the Embryology and Pathology of the Bicuspid Aortic Valve. Ann. Cardiothorac. Surg. 2022;11:38088–38388. doi: 10.21037/acs-2021-bav-14. PubMed DOI PMC
Pfaltzgraff E.R., Shelton E.L., Galindo C.L., Nelms B.L., Hooper C.W., Poole S.D., Labosky P.A., Bader D.M., Reese J. Embryonic Domains of the Aorta Derived from Diverse Origins Exhibit Distinct Properties That Converge into a Common Phenotype in the Adult. J. Mol. Cell. Cardiol. 2014;69:88–96. doi: 10.1016/j.yjmcc.2014.01.016. PubMed DOI PMC
Quintana R.A., Taylor W.R. Introduction to the Compendium on Aortic Aneurysms. Circ. Res. 2019;124:470–471. doi: 10.1161/CIRCRESAHA.119.314765. PubMed DOI
Sen I., D’Oria M., Weiss S., Bower T.C., Oderich G.S., Kalra M., Colglazier J., DeMartino R.R. Incidence and Natural History of Isolated Abdominal Aortic Dissection: A Population-Based Assessment from 1995 to 2015. J. Vasc. Surg. 2021;73:1198–1204.e1. doi: 10.1016/j.jvs.2020.07.090. PubMed DOI PMC
Joshi N.V., Elkhawad M., Forsythe R.O., McBride O.M.B., Rajani N.K., Tarkin J.M., Chowdhury M.M., Donoghue E., Robson J.M.J., Boyle J.R., et al. Greater Aortic Inflammation and Calcification in Abdominal Aortic Aneurysmal Disease than Atherosclerosis: A Prospective Matched Cohort Study. Open Heart. 2020;7:e001141. doi: 10.1136/openhrt-2019-001141. PubMed DOI PMC
Toghill B.J., Saratzis A., Bown M.J. Abdominal Aortic Aneurysm—An Independent Disease to Atherosclerosis? Cardiovasc. Pathol. 2017;27:71–75. doi: 10.1016/j.carpath.2017.01.008. PubMed DOI
Wittig C., Szulcek R. Extracellular Matrix Protein Ratios in the Human Heart and Vessels: How to Distinguish Pathological from Physiological Changes? Front. Physiol. 2021;12:708656. doi: 10.3389/fphys.2021.708656. PubMed DOI PMC
Pernomian L., Tan W., McCarthy C., Wenceslau C.F. Reprogramming Endothelial and Vascular Smooth Muscle Cells to Prevent and Treat Hypertension. Med. Hypotheses. 2023;179:111162. doi: 10.1016/j.mehy.2023.111162. PubMed DOI PMC
Jiang H., Jiang Y., Qu Y., Lv J., Zeng H. sGC Agonist BAY1021189 Promotes Thoracic Aortic Dissection Formation by Accelerating Vascular Smooth Muscle Cell Phenotype Switch. Eur. J. Pharmacol. 2023;952:175789. doi: 10.1016/j.ejphar.2023.175789. PubMed DOI
Kuzan A., Wisniewski J., Maksymowicz K., Kobielarz M., Gamian A., Chwilkowska A. Relationship between Calcification, Atherosclerosis and Matrix Proteins in the Human Aorta. Folia Histochem. Cytobiol. 2021;59:8–21. doi: 10.5603/FHC.a2021.0002. PubMed DOI
Neubauer K., Zieger B. Endothelial Cells and Coagulation. Cell Tissue Res. 2022;387:391–398. doi: 10.1007/s00441-021-03471-2. PubMed DOI PMC
Li M.-T., Ke J., Guo S.-F., Shan L.-L., Gong J.-H., Qiao T.-C., Tian H.-Y., Wu Y., Peng Z.-Y., Zeng X.-Q., et al. Huzhangqingmaiyin Protected Vascular Endothelial Cells against Cerebral Small Vessel Disease through Inhibiting Inflammation. J. Ethnopharmacol. 2024;318:116905. doi: 10.1016/j.jep.2023.116905. PubMed DOI
He B., Zhan Y., Cai C., Yu D., Wei Q., Quan L., Huang D., Liu Y., Li Z., Liu L., et al. Common Molecular Mechanism and Immune Infiltration Patterns of Thoracic and Abdominal Aortic Aneurysms. Front. Immunol. 2022;13:1030976. doi: 10.3389/fimmu.2022.1030976. PubMed DOI PMC
Allaire E., Schneider F., Saucy F., Dai J., Cochennec F., Michineau S., Zidi M., Becquemin J.-P., Kirsch M., Gervais M. New Insight in Aetiopathogenesis of Aortic Diseases. Eur. J. Vasc. Endovasc. Surg. 2009;37:531–537. doi: 10.1016/j.ejvs.2009.02.002. PubMed DOI
Kuivaniemi H., Ryer E.J., Elmore J.R., Tromp G. Understanding the Pathogenesis of Abdominal Aortic Aneurysms. Expert Rev. Cardiovasc. Ther. 2015;13:975–987. doi: 10.1586/14779072.2015.1074861. PubMed DOI PMC
Yap Z.J., Sharif M., Bashir M. Is There an Immunogenomic Difference between Thoracic and Abdominal Aortic Aneurysms? J. Card. Surg. 2021;36:1520–1530. doi: 10.1111/jocs.15440. PubMed DOI
Wu H., Xie C., Wang R., Cheng J., Xu Q., Zhao H. Comparative Analysis of Thoracic and Abdominal Aortic Aneurysms across the Segment and Species at the Single-Cell Level. Front. Pharmacol. 2023;13:1095757. doi: 10.3389/fphar.2022.1095757. PubMed DOI PMC
Patel R., Hall S., Lanford H., Ward N., Grespin R.T., Figueroa M., Mattia V., Xiong Y., Mukherjee R., Jones J., et al. Signaling through the IL-6-STAT3 Pathway Promotes Proteolytically-Active Macrophage Accumulation Necessary for Development of Small AAA. Vasc. Endovasc. Surg. 2023;57:433–444. doi: 10.1177/15385744231152961. PubMed DOI PMC
Wang X., He B., Deng Y., Liu J., Zhang Z., Sun W., Gao Y., Liu X., Zhen Y., Ye Z., et al. Identification of a Biomarker and Immune Infiltration in Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Front. Physiol. 2022;13:977910. doi: 10.3389/fphys.2022.977910. PubMed DOI PMC
Meekel J.P., Dias-Neto M., Bogunovic N., Conceição G., Sousa-Mendes C., Stoll G.R., Leite-Moreira A., Huynh J., Micha D., Eringa E.C., et al. Inflammatory Gene Expression of Human Perivascular Adipose Tissue in Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2021;61:1008–1016. doi: 10.1016/j.ejvs.2021.02.034. PubMed DOI
Nosalski R., Guzik T.J. Perivascular Adipose Tissue Inflammation in Vascular Disease. Br. J. Pharmacol. 2017;174:3496–3513. doi: 10.1111/bph.13705. PubMed DOI PMC
Song H., Yang Y., Sun Y., Wei G., Zheng H., Chen Y., Cai D., Li C., Ma Y., Lin Z., et al. Circular RNA Cdyl Promotes Abdominal Aortic Aneurysm Formation by Inducing M1 Macrophage Polarization and M1-Type Inflammation. Mol. Ther. J. Am. Soc. Gene Ther. 2022;30:915–931. doi: 10.1016/j.ymthe.2021.09.017. PubMed DOI PMC
Chen S., Zhao Y., Jin H., Qi X., He J., Huang J., Ding Y., Chen W., Wu C., Ding X., et al. TROVE2 Strengthens the Anti-Inflammatory Effect via Macrophage Polarization by Estrogen Induction in Abdominal Aortic Aneurysm. Life Sci. 2020;242:117207. doi: 10.1016/j.lfs.2019.117207. PubMed DOI
Lu S., White J.V., Nwaneshiudu I., Nwaneshiudu A., Monos D.S., Solomides C.C., Oleszak E.L., Platsoucas C.D. Human Abdominal Aortic Aneurysm (AAA): Evidence for an Autoimmune Antigen-Driven Disease. Autoimmun. Rev. 2022;21:103164. doi: 10.1016/j.autrev.2022.103164. PubMed DOI
Gao R., Liu D., Guo W., Ge W., Fan T., Li B., Gao P., Liu B., Zheng Y., Wang J. Meprin-α (Mep1A) Enhances TNF-α Secretion by Mast Cells and Aggravates Abdominal Aortic Aneurysms. Br. J. Pharmacol. 2020;177:2872–2885. doi: 10.1111/bph.15019. PubMed DOI PMC
Miao T., Wang T., Feng T., Yuan D., Guo Q., Xiong F., Yang Y., Liu L., He Z., Huang B., et al. Activated Invariant Natural Killer T Cells Infiltrate Aortic Tissue as Key Participants in Abdominal Aortic Aneurysm Pathology. Immunology. 2021;164:792–802. doi: 10.1111/imm.13401. PubMed DOI PMC
Wang L., Yang Z., Wang S., Que Y., Shu X., Wu F., Liu G., Li S., Hu P., Chen H., et al. Substitution of SERCA2 Cys674 Accelerates Aortic Aneurysm by Inducing Endoplasmic Reticulum Stress and Promoting Cell Apoptosis. Br. J. Pharmacol. 2022;179:4423–4439. doi: 10.1111/bph.15864. PubMed DOI
Han B., Yang M., Liu Q., Wang G., Hou J. Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. Dis. Markers. 2022;2022:4782361. doi: 10.1155/2022/4782361. PubMed DOI PMC
Jing J., Chang M., Jiang S., Wang T., Sun Q., Yang J., Ma C., Li T. Clinical Value of Serum miR-1-3p as a Potential Circulating Biomarker for Abdominal Aortic Aneurysm. Ann. Med. 2023;55:2260395. doi: 10.1080/07853890.2023.2260395. PubMed DOI PMC
Zhao L., Ouyang Y., Bai Y., Gong J., Liao H. miR-155-5p Inhibits the Viability of Vascular Smooth Muscle Cell via Targeting FOS and ZIC3 to Promote Aneurysm Formation. Eur. J. Pharmacol. 2019;853:145–152. doi: 10.1016/j.ejphar.2019.03.030. PubMed DOI
Chen Y., Fang Z.-M., Yi X., Wei X., Jiang D.-S. The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death Dis. 2023;14:205. doi: 10.1038/s41419-023-05716-0. PubMed DOI PMC
Papayannopoulos V. Neutrophil Extracellular Traps in Immunity and Disease. Nat. Rev. Immunol. 2018;18:134–147. doi: 10.1038/nri.2017.105. PubMed DOI
Chen L., Liu Y., Wang Z., Zhang L., Xu Y., Li Y., Zhang L., Wang G., Yang S., Xue G. Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect against Abdominal Aortic Aneurysm Formation by Inhibiting NET-Induced Ferroptosis. Exp. Mol. Med. 2023;55:939–951. doi: 10.1038/s12276-023-00986-2. PubMed DOI PMC
Qiu Y., Cao Y., Cao W., Jia Y., Lu N. The Application of Ferroptosis in Diseases. Pharmacol. Res. 2020;159:104919. doi: 10.1016/j.phrs.2020.104919. PubMed DOI
Wang S., Wang J., Cai D., Li X., Zhong L., He X., Lin Z., Lai Y., Zheng H., Zhou Y., et al. Reactive Oxygen Species-Induced Long Intergenic Noncoding RNA P21 Accelerates Abdominal Aortic Aneurysm Formation by Promoting Secretary Smooth Muscle Cell Phenotypes. J. Mol. Cell. Cardiol. 2023;174:63–76. doi: 10.1016/j.yjmcc.2022.11.002. PubMed DOI
Chang Z., Zhao G., Zhao Y., Lu H., Xiong W., Liang W., Sun J., Wang H., Zhu T., Rom O., et al. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Arterioscler. Thromb. Vasc. Biol. 2020;40:2494–2507. doi: 10.1161/ATVBAHA.120.314955. PubMed DOI PMC
Kostyunin A., Mukhamadiyarov R., Glushkova T., Bogdanov L., Shishkova D., Osyaev N., Ovcharenko E., Kutikhin A. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences. Int. J. Mol. Sci. 2020;21:7434. doi: 10.3390/ijms21207434. PubMed DOI PMC
Jana S., Hu M., Shen M., Kassiri Z. Extracellular Matrix, Regional Heterogeneity of the Aorta, and Aortic Aneurysm. Exp. Mol. Med. 2019;51:1–15. doi: 10.1038/s12276-019-0286-3. PubMed DOI PMC
Fu Y., Liu H., Li K., Wei P., Alam N., Deng J., Li M., Wu H., He X., Hou H., et al. C-Reactive Protein Deficiency Ameliorates Experimental Abdominal Aortic Aneurysms. Front. Immunol. 2023;14:1233807. doi: 10.3389/fimmu.2023.1233807. PubMed DOI PMC
Nevado R.M., Hamczyk M.R., Gonzalo P., Andrés-Manzano M.J., Andrés V. Premature Vascular Aging with Features of Plaque Vulnerability in an Atheroprone Mouse Model of Hutchinson–Gilford Progeria Syndrome with Ldlr Deficiency. Cells. 2020;9:2252. doi: 10.3390/cells9102252. PubMed DOI PMC
Salmasi M.Y., Morris-Rosendahl D., Jarral O.A., Rosendahl U., Asimakopoulos G., Raja S., Aragon-Martin J.A., Child A., Pepper J., Oo A., et al. Determining the Genetic Contribution in Patients with Non-Syndromic Ascending Thoracic Aortic Aneurysms: Correlation with Findings from Computational Pathology. Int. J. Cardiol. 2022;366:1–9. doi: 10.1016/j.ijcard.2022.07.010. PubMed DOI
Doherty E.L., Aw W.Y., Warren E.C., Hockenberry M., Whitworth C.P., Krohn G., Howell S., Diekman B.O., Legant W.R., Nia H.T., et al. Patient-Derived Extracellular Matrix Demonstrates Role of COL3A1 in Blood Vessel Mechanics. Acta Biomater. 2023;166:346–359. doi: 10.1016/j.actbio.2023.05.015. PubMed DOI PMC
Errichiello E., Malara A., Grimod G., Avolio L., Balduini A., Zuffardi O. Low Penetrance COL5A1 Variants in a Young Patient with Intracranial Aneurysm and Very Mild Signs of Ehlers-Danlos Syndrome. Eur. J. Med. Genet. 2021;64:104099. doi: 10.1016/j.ejmg.2020.104099. PubMed DOI
Deleeuw V., Carlson E., Renard M., Zientek K.D., Wilmarth P.A., Reddy A.P., Manalo E.C., Tufa S.F., Keene D.R., Olbinado M., et al. Unraveling the Role of TGFβ Signaling in Thoracic Aortic Aneurysm and Dissection Using Fbn1 Mutant Mouse Models. Matrix Biol. J. Int. Soc. Matrix Biol. 2023;123:17–33. doi: 10.1016/j.matbio.2023.09.001. PubMed DOI
Watson S.R., Cooper K.M., Liu P., Gharraee N., Du L., Han S.M., Peña E.A., Sutton M.A., Eberth J.F., Lessner S.M. Diet Alters Age-Related Remodeling of Aortic Collagen in Mice Susceptible to Atherosclerosis. Am. J. Physiol.-Heart Circ. Physiol. 2021;320:H52–H65. doi: 10.1152/ajpheart.00420.2020. PubMed DOI PMC
Fan L.M., Douglas G., Bendall J.K., McNeill E., Crabtree M.J., Hale A.B., Mai A., Li J.-M., McAteer M.A., Schneider J.E., et al. Endothelial Cell–Specific Reactive Oxygen Species Production Increases Susceptibility to Aortic Dissection. Circulation. 2014;129:2661–2672. doi: 10.1161/CIRCULATIONAHA.113.005062. PubMed DOI PMC
Wang Z., Zhao X., Zhao G., Guo Y., Lu H., Mu W., Zhong J., Garcia-Barrio M., Zhang J., Chen Y.E., et al. PRDM16 Deficiency in Vascular Smooth Muscle Cells Aggravates Abdominal Aortic Aneurysm. JCI Insight. 2023;8:e167041. doi: 10.1172/jci.insight.167041. PubMed DOI PMC
Wang S., Yuan Q., Zhao W., Zhou W. Circular RNA RBM33 Contributes to Extracellular Matrix Degradation via miR-4268/EPHB2 Axis in Abdominal Aortic Aneurysm. PeerJ. 2021;9:e12232. doi: 10.7717/peerj.12232. PubMed DOI PMC
Teti G., Chiarini F., Mazzotti E., Ruggeri A., Carano F., Falconi M. Cellular Senescence in Vascular Wall Mesenchymal Stromal Cells, a Possible Contribution to the Development of Aortic Aneurysm. Mech. Ageing Dev. 2021;197:111515. doi: 10.1016/j.mad.2021.111515. PubMed DOI
Gadanec L.K., McSweeney K.R., Kubatka P., Caprnda M., Gaspar L., Prosecky R., Dragasek J., Kruzliak P., Apostolopoulos V., Zulli A. Angiotensin II Constricts Mouse Iliac Arteries: Possible Mechanism for Aortic Aneurysms. Mol. Cell. Biochem. 2023 doi: 10.1007/s11010-023-04724-0. PubMed DOI
Tomimori Y., Manno A., Tanaka T., Futamura-Takahashi J., Muto T., Nagahira K. ASB17061, a Novel Chymase Inhibitor, Prevented the Development of Angiotensin II-Induced Abdominal Aortic Aneurysm in Apolipoprotein E-Deficient Mice. Eur. J. Pharmacol. 2019;856:172403. doi: 10.1016/j.ejphar.2019.05.032. PubMed DOI
Poto R., Patella V., Criscuolo G., Marone G., Coscioni E., Varricchi G. Autoantibodies to IgE Can Induce the Release of Proinflammatory and Vasoactive Mediators from Human Cardiac Mast Cells. Clin. Exp. Med. 2023;23:1265–1276. doi: 10.1007/s10238-022-00861-w. PubMed DOI PMC
Rodrigues M.R., e Melo R.G., Silvestre L., e Fernandes R.F., Martins C., Pedro L.M. A Literature Review on Pharmacologic Therapy for Abdominal Aortic Aneurysms. Angiol. Cir. Vasc. 2023;19:44–46. doi: 10.48750/acv.501. DOI
Puchenkova O.A., Soldatov V.O., Belykh A.E., Bushueva O., Piavchenko G.A., Venediktov A.A., Shakhpazyan N.K., Deykin A.V., Korokin M.V., Pokrovskiy M.V. Cytokines in Abdominal Aortic Aneurysm: Master Regulators With Clinical Application. Biomark. Insights. 2022;17:11772719221095676. doi: 10.1177/11772719221095676. PubMed DOI PMC
Tingting T., Wenjing F., Qian Z., Hengquan W., Simin Z., Zhisheng J., Shunlin Q. The TGF-β Pathway Plays a Key Role in Aortic Aneurysms. Clin. Chim. Acta Int. J. Clin. Chem. 2020;501:222–228. doi: 10.1016/j.cca.2019.10.042. PubMed DOI
Evers-van Gogh I.J.A., Oteng A.-B., Alex S., Hamers N., Catoire M., Stienstra R., Kalkhoven E., Kersten S. Muscle-Specific Inflammation Induced by MCP-1 Overexpression Does Not Affect Whole-Body Insulin Sensitivity in Mice. Diabetologia. 2016;59:624–633. doi: 10.1007/s00125-015-3822-2. PubMed DOI PMC
Lowis C., Ramara Winaya A., Kumari P., Rivera C.F., Vlahos J., Hermantara R., Pratama M.Y., Ramkhelawon B. Mechanosignals in Abdominal Aortic Aneurysms. Front. Cardiovasc. Med. 2023;9:1021934. doi: 10.3389/fcvm.2022.1021934. PubMed DOI PMC
Jin Z., Deng H., Xiong S., Gao L. Perspective of SGLT2i in the Treatment of Abdominal Aortic Aneurysms. J. Cardiovasc. Pharmacol. 2023;81:241–247. doi: 10.1097/FJC.0000000000001395. PubMed DOI PMC
Salmon M. NADPH Oxidases in Aortic Aneurysms. Antioxidants. 2022;11:1830. doi: 10.3390/antiox11091830. PubMed DOI PMC
Wu T., Li N., Zhang Q., Liu R., Zhao H., Fan Z., Zhuo L., Yang Y., Xu Y. MKL1 Fuels ROS-Induced Proliferation of Vascular Smooth Muscle Cells by Modulating FOXM1 Transcription. Redox Biol. 2022;59:102586. doi: 10.1016/j.redox.2022.102586. PubMed DOI PMC
Groeneveld M.E., Struik J.A., Musters R.J.P., Tangelder G.J., Koolwijk P., Niessen H.W., Hoksbergen A.W.J., Wisselink W., Yeung K.K. The Potential Role of Neutrophil Gelatinase-Associated Lipocalin in the Development of Abdominal Aortic Aneurysms. Ann. Vasc. Surg. 2019;57:210–219. doi: 10.1016/j.avsg.2018.11.006. PubMed DOI
Klopf J., Brostjan C., Neumayer C., Eilenberg W. Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines. 2021;9:1236. doi: 10.3390/biomedicines9091236. PubMed DOI PMC
Zhou H., Yan H., Cannon J.L., Springer L.E., Green J.M., Pham C.T.N. CD43-Mediated IFN-γ Production by CD8+ T Cells Promotes Abdominal Aortic Aneurysm in Mice. J. Immunol. 2013;190:5078–5085. doi: 10.4049/jimmunol.1203228. PubMed DOI PMC
Stepien K.L., Bajdak-Rusinek K., Fus-Kujawa A., Kuczmik W., Gawron K. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int. J. Mol. Sci. 2022;23:11078. doi: 10.3390/ijms231911078. PubMed DOI PMC
Iwańczyk S., Lehmann T., Grygier M., Woźniak P., Lesiak M., Araszkiewicz A. Serum Matrix Metalloproteinase-8 Level in Patients with Coronary Artery Abnormal Dilatation. Pol. Arch. Intern. Med. 2022;132:16241. doi: 10.20452/pamw.16241. PubMed DOI
Surma S., Stolorz K., Sierka O., Sieroń A., Lesiak M. The Role of Selected Metalloproteinases and Some Genetic Factors in the Pathogenesis of Abdominal Aortic Aneurysm. Acta Angiol. 2021;1:22–31. doi: 10.5603/AA.2021.0005. DOI
Berman A., Romary D., Kerr K., Gorazd N., Wigand M., Patnaik S., Finol E., Cox A., Goergen C. Experimental Aortic Aneurysm Severity and Growth Depend on Topical Elastase Concentration and Lysyl Oxidase Inhibition. Sci. Rep. 2022;12:99. doi: 10.1038/s41598-021-04089-8. PubMed DOI PMC
Remus E.W., O’Donnell R.E., Rafferty K., Weiss D., Joseph G., Csiszar K., Fong S.F.T., Taylor W.R. The Role of Lysyl Oxidase Family Members in the Stabilization of Abdominal Aortic Aneurysms. Am. J. Physiol.-Heart Circ. Physiol. 2012;303:H1067–H1075. doi: 10.1152/ajpheart.00217.2012. PubMed DOI PMC
Bumdelger B., Kokubo H., Kamata R., Fujii M., Yoshimura K., Aoki H., Orita Y., Ishida T., Ohtaki M., Nagao M., et al. Osteoprotegerin Prevents Development of Abdominal Aortic Aneurysms. PLoS ONE. 2016;11:e0147088. doi: 10.1371/journal.pone.0147088. PubMed DOI PMC
Karasaki K., Kokubo H., Bumdelger B., Kaji N., Sakai C., Ishida M., Yoshizumi M. Angiotensin II Type 1 Receptor Blocker Prevents Abdominal Aortic Aneurysm Progression in Osteoprotegerin-Deficient Mice via Upregulation of Angiotensin (1–7) J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2023;12:e027589. doi: 10.1161/JAHA.122.027589. PubMed DOI PMC
Herrero-Cervera A., Espinós-Estévez C., Martín-Vañó S., Taberner-Cortés A., Aguilar-Ballester M., Vinué Á., Piqueras L., Martínez-Hervás S., González-Navarro H. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14) Biomedicines. 2021;9:1518. doi: 10.3390/biomedicines9111518. PubMed DOI PMC
Wang S.K., Green L.A., Gutwein A.R., Gupta A.K., Babbey C.M., Motaganahalli R.L., Fajardo A., Murphy M.P. Osteopontin May Be a Driver of Abdominal Aortic Aneurysm Formation. J. Vasc. Surg. 2018;68:22S–29S. doi: 10.1016/j.jvs.2017.10.068. PubMed DOI
Sajeesh S., Camardo A., Dahal S., Ramamurthi A. Surface-Functionalized Stem Cell-Derived Extracellular Vesicles for Vascular Elastic Matrix Regenerative Repair. Mol. Pharm. 2023;20:2801–2813. doi: 10.1021/acs.molpharmaceut.2c00769. PubMed DOI PMC
Zhang X., Luo S., Wang M., Shi G.-P. Cysteinyl Cathepsins in Cardiovascular Diseases. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140360. doi: 10.1016/j.bbapap.2020.140360. PubMed DOI PMC
Shen Y.H., LeMaire S.A., Webb N.R., Cassis L.A., Daugherty A., Lu H.S. Aortic Aneurysms and Dissections Series. Arterioscler. Thromb. Vasc. Biol. 2020;40:e37–e46. doi: 10.1161/ATVBAHA.120.313991. PubMed DOI PMC
Golledge J. Abdominal Aortic Aneurysm: Update on Pathogenesis and Medical Treatments. Nat. Rev. Cardiol. 2019;16:225–242. doi: 10.1038/s41569-018-0114-9. PubMed DOI
Peng H., Zhang K., Liu Z., Xu Q., You B., Li C., Cao J., Zhou H., Li X., Chen J., et al. VPO1 Modulates Vascular Smooth Muscle Cell Phenotypic Switch by Activating Extracellular Signal-Regulated Kinase 1/2 (ERK 1/2) in Abdominal Aortic Aneurysms. J. Am. Heart Assoc. 2018;7:e010069. doi: 10.1161/JAHA.118.010069. PubMed DOI PMC
Zalewski D., Chmiel P., Kołodziej P., Borowski G., Feldo M., Kocki J., Bogucka-Kocka A. Dysregulations of Key Regulators of Angiogenesis and Inflammation in Abdominal Aortic Aneurysm. Int. J. Mol. Sci. 2023;24:12087. doi: 10.3390/ijms241512087. PubMed DOI PMC
Kumar A., Taghi Khani A., Sanchez Ortiz A., Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022;13:901277. doi: 10.3389/fimmu.2022.901277. PubMed DOI PMC
Lazarus H.M., Ragsdale C.E., Gale R.P., Lyman G.H. Sargramostim (Rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front. Immunol. 2021;12:706186. doi: 10.3389/fimmu.2021.706186. PubMed DOI PMC
United States Food and Drug Administration . Executive Order 13944 List of Essential Medicines, Medical Countermeasures, and Critical Inputs. United States Food and Drug Administration; Silver Spring, MD, USA: 2023.
Mihalik N.E., Wen S., Driesschaert B., Eubank T.D. Formulation and in Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech. 2021;22:191. doi: 10.1208/s12249-021-02049-z. PubMed DOI PMC
Kang J., Postigo-Fernandez J., Kim K., Zhu C., Yu J., Meroni M., Mayfield B., Bartolomé A., Dapito D.H., Ferrante A.W., et al. Notch-Mediated Hepatocyte MCP-1 Secretion Causes Liver Fibrosis. JCI Insight. 2023;8:e165369. doi: 10.1172/jci.insight.165369. PubMed DOI PMC
Pulito-Cueto V., Remuzgo-Martínez S., Genre F., Atienza-Mateo B., Mora-Cuesta V.M., Iturbe-Fernández D., Lera-Gómez L., Sebastián Mora-Gil M., Prieto-Peña D., Portilla V., et al. Elevated VCAM-1, MCP-1 and ADMA Serum Levels Related to Pulmonary Fibrosis of Interstitial Lung Disease Associated with Rheumatoid Arthritis. Front. Mol. Biosci. 2022;9:1056121. doi: 10.3389/fmolb.2022.1056121. PubMed DOI PMC
Angelova P.R., Dinkova-Kostova A.T., Abramov A.Y. Assessment of ROS Production in the Mitochondria of Live Cells. Methods Mol. Biol. Clifton NJ. 2021;2202:33–42. doi: 10.1007/978-1-0716-0896-8_2. PubMed DOI
Lennicke C., Cochemé H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell. 2021;81:3691–3707. doi: 10.1016/j.molcel.2021.08.018. PubMed DOI
Liu C., Yang Q., Fang G., Li B.-S., Wu D.-B., Guo W.-J., Hong S.-S., Hong L. Collagen Metabolic Disorder Induced by Oxidative Stress in Human Uterosacral Ligament-derived Fibroblasts: A Possible Pathophysiological Mechanism in Pelvic Organ Prolapse. Mol. Med. Rep. 2016;13:2999–3008. doi: 10.3892/mmr.2016.4919. PubMed DOI PMC
Ma X., Fu Y., Xiao H., Song Y., Chen R., Shen J., An X., Shen Q., Li Z., Zhang Y. Cardiac Fibrosis Alleviated by Exercise Training Is AMPK-Dependent. PLoS ONE. 2015;10:e0129971. doi: 10.1371/journal.pone.0129971. PubMed DOI PMC
Spada S., Tocci A., Di Modugno F., Nisticò P. Fibronectin as a Multiregulatory Molecule Crucial in Tumor Matrisome: From Structural and Functional Features to Clinical Practice in Oncology. J. Exp. Clin. Cancer Res. 2021;40:102. doi: 10.1186/s13046-021-01908-8. PubMed DOI PMC
Xu Y., Yang S., Xue G. The Role of Long Non-Coding RNA in Abdominal Aortic Aneurysm. Front. Genet. 2023;14:1153899. doi: 10.3389/fgene.2023.1153899. PubMed DOI PMC
Guo F., Wang E., Yang Y., Mao Y., Liu C., Bu W., Li P., Zhao L., Jin Q., Liu B., et al. A Natural Biomineral for Enhancing the Biomineralization and Cell Response of 3D Printed Polylactic Acid Bone Scaffolds. Int. J. Biol. Macromol. 2023;242:124728. doi: 10.1016/j.ijbiomac.2023.124728. PubMed DOI
Lee L.Y.-H., Oldham W.M., He H., Wang R., Mulhern R., Handy D.E., Loscalzo J. Interferon-γ Impairs Human Coronary Artery Endothelial Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid Oxidation. Circulation. 2021;144:1612–1628. doi: 10.1161/CIRCULATIONAHA.121.053960. PubMed DOI PMC
Yin H., Jiang Z., Wang S., Zhang P. IFN-γ Restores the Impaired Function of RNase L and Induces Mitochondria-Mediated Apoptosis in Lung Cancer. Cell Death Dis. 2019;10:642. doi: 10.1038/s41419-019-1902-9. PubMed DOI PMC
Park S.-H., Hwang J.-S., Oh S.-H., Shin Y.-J. MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells. 2022;12:36. doi: 10.3390/cells12010036. PubMed DOI PMC
Wang H., Wei G., Cheng S., Wang D., Ma J., Xin S. Circulatory CD4-Positive T-Lymphocyte Imbalance Mediated by Homocysteine-Induced AIM2 and NLRP1 Inflammasome Upregulation and Activation Is Associated with Human Abdominal Aortic Aneurysm. J. Vasc. Res. 2020;57:276–290. doi: 10.1159/000508077. PubMed DOI
Miao Y., Zhao Y., Han L., Ma X., Deng J., Yang J., Lü S., Shao F., Kong W., Wang W., et al. NSun2 Regulates Aneurysm Formation by Promoting Autotaxin Expression and T Cell Recruitment. Cell. Mol. Life Sci. CMLS. 2021;78:1709–1727. doi: 10.1007/s00018-020-03607-7. PubMed DOI PMC
Murali Krishna S., Morton S.K., Li J., Golledge J. Risk Factors and Mouse Models of Abdominal Aortic Aneurysm Rupture. Int. J. Mol. Sci. 2020;21:7250. doi: 10.3390/ijms21197250. PubMed DOI PMC
Wang K., Meng X., Guo Z. Elastin Structure, Synthesis, Regulatory Mechanism and Relationship With Cardiovascular Diseases. Front. Cell Dev. Biol. 2021;9:596702. doi: 10.3389/fcell.2021.596702. PubMed DOI PMC
Kobielarz M. Effect of Collagen Fibres and Elastic Lamellae Content on the Mechanical Behaviour of Abdominal Aortic Aneurysms. Acta Bioeng. Biomech. 2020;22:9–21. doi: 10.37190/ABB-01580-2020-02. PubMed DOI
Quintana R.A., Taylor W.R. Cellular Mechanisms of Aortic Aneurysm Formation. Circ. Res. 2019;124:607–618. doi: 10.1161/CIRCRESAHA.118.313187. PubMed DOI PMC
Pasta S., Agnese V., Gallo A., Cosentino F., Di Giuseppe M., Gentile G., Raffa G.M., Maalouf J.F., Michelena H.I., Bellavia D., et al. Shear Stress and Aortic Strain Associations With Biomarkers of Ascending Thoracic Aortic Aneurysm. Ann. Thorac. Surg. 2020;110:1595–1604. doi: 10.1016/j.athoracsur.2020.03.017. PubMed DOI
Li Y., Wang W., Li L., Khalil R.A. MMPs and ADAMs/ADAMTS Inhibition Therapy of Abdominal Aortic Aneurysm. Life Sci. 2020;253:117659. doi: 10.1016/j.lfs.2020.117659. PubMed DOI PMC
Steffensen L.B., Stubbe J., Lindholt J.S., Beck H.C., Overgaard M., Bloksgaard M., Genovese F., Holm Nielsen S., Tha M.L.T., Bang-Moeller S.K., et al. Basement Membrane Collagen IV Deficiency Promotes Abdominal Aortic Aneurysm Formation. Sci. Rep. 2021;11:12903. doi: 10.1038/s41598-021-92303-y. PubMed DOI PMC
Su G.-J., Gao J., Wu C.-W., Zou J.-F., Zhang D., Zhu D.-L., Liu J., Zhang J.-H., Huang X.-J. Serum Levels of MMP-8 and MMP-9 as Markers in Chronic Subdural Hematoma. J. Clin. Med. 2022;11:902. doi: 10.3390/jcm11040902. PubMed DOI PMC
Bararu Bojan (Bararu) I., Pleșoianu C.E., Badulescu O.V., Vladeanu M.C., Badescu M.C., Iliescu D., Bojan A., Ciocoiu M. Molecular and Cellular Mechanisms Involved in Aortic Wall Aneurysm Development. Diagnostics. 2023;13:253. doi: 10.3390/diagnostics13020253. PubMed DOI PMC
Migacz M., Janoska-Gawrońska A., Holecki M., Chudek J. The Role of Osteoprotegerin in the Development, Progression and Management of Abdominal Aortic Aneurysms. Open Med. 2020;15:457–463. doi: 10.1515/med-2020-0046. PubMed DOI PMC
Liu H., Zhang Y., Song W., Sun Y., Jiang Y. Osteopontin N-Terminal Function in an Abdominal Aortic Aneurysm From Apolipoprotein E-Deficient Mice. Front. Cell Dev. Biol. 2021;9:681790. doi: 10.3389/fcell.2021.681790. PubMed DOI PMC
Cao G., Xuan X., Hu J., Zhang R., Jin H., Dong H. How Vascular Smooth Muscle Cell Phenotype Switching Contributes to Vascular Disease. Cell Commun. Signal. 2022;20:180. doi: 10.1186/s12964-022-00993-2. PubMed DOI PMC
Rombouts K.B., van Merrienboer T.A.R., Ket J.C.F., Bogunovic N., van der Velden J., Yeung K.K. The Role of Vascular Smooth Muscle Cells in the Development of Aortic Aneurysms and Dissections. Eur. J. Clin. Investig. 2022;52:e13697. doi: 10.1111/eci.13697. PubMed DOI PMC
Lv P., Yin Y.-J., Kong P., Cao L., Xi H., Wang N., Yang H.-C., Lv Y.-H., Chen N., Wang R., et al. SM22α Loss Contributes to Apoptosis of Vascular Smooth Muscle Cells via Macrophage-Derived circRasGEF1B. Oxidative Med. Cell. Longev. 2021;2021:5564884. doi: 10.1155/2021/5564884. PubMed DOI PMC
Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E., Reutelingsperger C., Jacobs M., Mees B., Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler. Thromb. Vasc. Biol. 2019;39:1351–1368. doi: 10.1161/ATVBAHA.119.312787. PubMed DOI
Lin J., Chen S., Yao Y., Yan M. Status of Diagnosis and Therapy of Abdominal Aortic Aneurysms. Front. Cardiovasc. Med. 2023;10:1199804. doi: 10.3389/fcvm.2023.1199804. PubMed DOI PMC
Kobeissi E., Hibino M., Pan H., Aune D. Blood Pressure, Hypertension and the Risk of Abdominal Aortic Aneurysms: A Systematic Review and Meta-Analysis of Cohort Studies. Eur. J. Epidemiol. 2019;34:547–555. doi: 10.1007/s10654-019-00510-9. PubMed DOI PMC
Wu M., Zhang S., Zhang W., Zhou Y., Guo Z., Fang Y., Yang Y., Shen Z., Lian D., Shen A., et al. Qingda Granule Ameliorates Vascular Remodeling and Phenotypic Transformation of Adventitial Fibroblasts via Suppressing the TGF-Β1/Smad2/3 Pathway. J. Ethnopharmacol. 2023;313:116535. doi: 10.1016/j.jep.2023.116535. PubMed DOI
Yu N., Shen A., Chu J., Huang Y., Zhang L., Lin S., Cai Q., Sankararaman S., Sferra T.J., Chen Y., et al. Qingda Granule Inhibits Angiotensin Ⅱ Induced VSMCs Proliferation through MAPK and PI3K/AKT Pathways. J. Ethnopharmacol. 2020;258:112767. doi: 10.1016/j.jep.2020.112767. PubMed DOI
Dai Z., Zhu M.M., Peng Y., Jin H., Machireddy N., Qian Z., Zhang X., Zhao Y.-Y. Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2018;198:788–802. doi: 10.1164/rccm.201709-1835OC. PubMed DOI PMC
Xu H., Wang C., Song T.-T., Liu Y., Dong C.-W. Effects of Ziyin Qianyang Formula on Renal Fibrosis through the TGF-Β1/Smads Signaling Pathway in Spontaneously Hypertensive Rats. Evid.-Based Complement. Altern. Med. ECAM. 2022;2022:6088673. doi: 10.1155/2022/6088673. PubMed DOI PMC
Hinterseher I., Tromp G., Kuivaniemi H. Genes and Abdominal Aortic Aneurysm. Ann. Vasc. Surg. 2011;25:388–412. doi: 10.1016/j.avsg.2010.09.004. PubMed DOI PMC
Acharya M., Maselli D., Mariscalco G. Genetic Screening in Heritable Thoracic Aortic Disease—Rationale, Potentials and Pitfalls. Indian J. Thorac. Cardiovasc. Surg. 2022;38:24–35. doi: 10.1007/s12055-020-01124-7. PubMed DOI PMC
Rodrigues Bento J., Meester J., Luyckx I., Peeters S., Verstraeten A., Loeys B. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu. Rev. Genom. Hum. Genet. 2022;23:223–253. doi: 10.1146/annurev-genom-111521-104455. PubMed DOI
Hannuksela M., Stattin E.-L., Johansson B., Carlberg B. Screening for Familial Thoracic Aortic Aneurysms with Aortic Imaging Does Not Detect All Potential Carriers of the Disease. AORTA. 2015;3:1–8. doi: 10.12945/j.aorta.2015.14-052. PubMed DOI PMC
Ostberg N.P., Zafar M.A., Ziganshin B.A., Elefteriades J.A. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules. 2020;10:182. doi: 10.3390/biom10020182. PubMed DOI PMC
Proost D., Vandeweyer G., Meester J.A.N., Salemink S., Kempers M., Ingram C., Peeters N., Saenen J., Vrints C., Lacro R.V., et al. Performant Mutation Identification Using Targeted Next-Generation Sequencing of 14 Thoracic Aortic Aneurysm Genes. Hum. Mutat. 2015;36:808–814. doi: 10.1002/humu.22802. PubMed DOI
van de Luijtgaarden K.M., Heijsman D., Maugeri A., Weiss M.M., Verhagen H.J.M., IJpma A., Brüggenwirth H.T., Majoor-Krakauer D. First Genetic Analysis of Aneurysm Genes in Familial and Sporadic Abdominal Aortic Aneurysm. Hum. Genet. 2015;134:881–893. doi: 10.1007/s00439-015-1567-0. PubMed DOI PMC
Renard M., Francis C., Ghosh R., Scott A.F., Witmer P.D., Adès L.C., Andelfinger G.U., Arnaud P., Boileau C., Callewaert B.L., et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J. Am. Coll. Cardiol. 2018;72:605–615. doi: 10.1016/j.jacc.2018.04.089. PubMed DOI PMC
Milewicz D.M., Braverman A.C., De Backer J., Morris S.A., Boileau C., Maumenee I.H., Jondeau G., Evangelista A., Pyeritz R.E. Marfan Syndrome. Nat. Rev. Dis. Primers. 2021;7:64. doi: 10.1038/s41572-021-00298-7. PubMed DOI PMC
Isselbacher E.M., Lino Cardenas C.L., Lindsay M.E. Hereditary Influence in Thoracic Aortic Aneurysm and Dissection. Circulation. 2016;133:2516–2528. doi: 10.1161/CIRCULATIONAHA.116.009762. PubMed DOI PMC
De Cario R., Sticchi E., Lucarini L., Attanasio M., Nistri S., Marcucci R., Pepe G., Giusti B. Role of TGFBR1 and TGFBR2 Genetic Variants in Marfan Syndrome. J. Vasc. Surg. 2018;68:225–233.e5. doi: 10.1016/j.jvs.2017.04.071. PubMed DOI
Gouda P., Kay R., Habib M., Aziz A., Aziza E., Welsh R. Clinical Features and Complications of Loeys-Dietz Syndrome: A Systematic Review. Int. J. Cardiol. 2022;362:158–167. doi: 10.1016/j.ijcard.2022.05.065. PubMed DOI
Dittman J.M., Saldana-Ruiz N., Newhall K., Byers P.H., Starnes B.W., Shalhub S. Open Repair of Abdominal Aortic Aneurysms in Patients with Vascular Ehlers-Danlos Syndrome. J. Vasc. Surg. Cases Innov. Tech. 2023;9:101194. doi: 10.1016/j.jvscit.2023.101194. PubMed DOI PMC
Faggion Vinholo T., Zafar M.A., Ziganshin B.A., Elefteriades J.A. Nonsyndromic Thoracic Aortic Aneurysms and Dissections—Is Screening Possible? Semin. Thorac. Cardiovasc. Surg. 2019;31:628–634. doi: 10.1053/j.semtcvs.2019.05.035. PubMed DOI
Renard M., Callewaert B., Baetens M., Campens L., MacDermot K., Fryns J.-P., Bonduelle M., Dietz H.C., Gaspar I.M., Cavaco D., et al. Novel MYH11 and ACTA2 Mutations Reveal a Role for Enhanced TGFβ Signaling in FTAAD. Int. J. Cardiol. 2013;165:314–321. doi: 10.1016/j.ijcard.2011.08.079. PubMed DOI PMC
Salmasi M.Y., Alwis S., Cyclewala S., Jarral O.A., Mohamed H., Mozalbat D., Nienaber C.A., Athanasiou T., Morris-Rosendahl D., Moore J., Jr., et al. The Genetic Basis of Thoracic Aortic Disease: The Future of Aneurysm Classification? Hell. J. Cardiol. 2023;69:41–50. doi: 10.1016/j.hjc.2022.09.009. PubMed DOI
Hiratzka L.F., Bakris G.L., Beckman J.A., Bersin R.M., Carr V.F., Casey D.E., Eagle K.A., Hermann L.K., Isselbacher E.M., Kazerooni E.A., et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease. Circulation. 2010;121:e266–e369. doi: 10.1161/CIR.0b013e3181d4739e. PubMed DOI
Negishi K., Aizawa K., Shindo T., Suzuki T., Sakurai T., Saito Y., Miyakawa T., Tanokura M., Kataoka Y., Maeda M., et al. An Myh11 Single Lysine Deletion Causes Aortic Dissection by Reducing Aortic Structural Integrity and Contractility. Sci. Rep. 2022;12:8844. doi: 10.1038/s41598-022-12418-8. PubMed DOI PMC
Wallace S.E., Regalado E.S., Gong L., Janda A.L., Guo D., Russo C.F., Kulmacz R.J., Hanna N., Jondeau G., Boileau C., et al. MYLK Pathogenic Variants Aortic Disease Presentation, Pregnancy Risk, and Characterization of Pathogenic Missense Variants. Genet. Med. 2019;21:144–151. doi: 10.1038/s41436-018-0038-0. PubMed DOI PMC
Linné A., Lindström D., Hultgren R. High Prevalence of Abdominal Aortic Aneurysms in Brothers and Sisters of Patients despite a Low Prevalence in the Population. J. Vasc. Surg. 2012;56:305–310. doi: 10.1016/j.jvs.2012.01.061. PubMed DOI
Sakalihasan N., Defraigne J.-O., Kerstenne M.-A., Cheramy-Bien J.-P., Smelser D.T., Tromp G., Kuivaniemi H. Family Members of Patients with Abdominal Aortic Aneurysms Are at Increased Risk for Aneurysms: Analysis of 618 Probands and Their Families from the Liège AAA Family Study. Ann. Vasc. Surg. 2014;28:787–797. doi: 10.1016/j.avsg.2013.11.005. PubMed DOI PMC
Duan X.-Y., Guo D., Regalado E.S., Shen H., Coselli J.S., Estrera A.L., Safi H.J., Bamshad M.J., Nickerson D.A., LeMaire S.A., et al. SMAD4 Rare Variants in Individuals and Families with Thoracic Aortic Aneurysms and Dissections. Eur. J. Hum. Genet. 2019;27:1054–1060. doi: 10.1038/s41431-019-0357-x. PubMed DOI PMC
Da Ros F., Carnevale R., Cifelli G., Bizzotto D., Casaburo M., Perrotta M., Carnevale L., Vinciguerra I., Fardella S., Iacobucci R., et al. Targeting Interleukin-1β Protects from Aortic Aneurysms Induced by Disrupted Transforming Growth Factor β Signaling. Immunity. 2017;47:959–973.e9. doi: 10.1016/j.immuni.2017.10.016. PubMed DOI
Zhang F., Li K., Zhang W., Zhao Z., Chang F., Du J., Zhang X., Bao K., Zhang C., Shi L., et al. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis in Vascular Smooth Muscle Cells. Circulation. 2023 doi: 10.1161/CIRCULATIONAHA.123.066110. PubMed DOI
Yu H., Jiao X., Yang Y., Lv Q., Du Z., Li L., Hu C., Du Y., Zhang J., Li F., et al. ANGPTL8 Deletion Attenuates Abdominal Aortic Aneurysm Formation in ApoE−/− Mice. Clin. Sci. 2023;137:979–993. doi: 10.1042/CS20230031. PubMed DOI PMC
Niu X., Wang B. A Network Medical Framework Based on Inflammatory Genes to Identify Drug Candidates for Abdominal Aortic Aneurysms. Curr. Mol. Pharmacol. 2023;17:e170523216998 PubMed