Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
38365582
PubMed Central
PMC10870680
DOI
10.1186/s12870-024-04791-5
PII: 10.1186/s12870-024-04791-5
Knihovny.cz E-resources
- Keywords
- Antioxidant activity, Chlorophyll content, Chromium, Deashed biochar, Strigolactone,
- MeSH
- Chlorophyll A MeSH
- Chromium MeSH
- Charcoal MeSH
- Ecosystem MeSH
- Heterocyclic Compounds, 3-Ring * MeSH
- Lactones * MeSH
- Soil Pollutants * MeSH
- Soil chemistry MeSH
- Raphanus * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- biochar MeSH Browser
- Chlorophyll A MeSH
- Chromium MeSH
- Charcoal MeSH
- GR24 strigolactone MeSH Browser
- Heterocyclic Compounds, 3-Ring * MeSH
- Lactones * MeSH
- Soil Pollutants * MeSH
- Soil MeSH
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
See more in PubMed
Li F, Yang H, Ayyamperumal R, Liu Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere. 2022;308:136396. doi: 10.1016/j.chemosphere.2022.136396. PubMed DOI
Syed A, Elgorban AM, Bahkali AH, Eswaramoorthy R, Iqbal RK, Danish S. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Sci Rep. 2023;13:4471. doi: 10.1038/s41598-023-31330-3. PubMed DOI PMC
Younis U, Danish S, Malik SA, Ahmed N, Munir TM, Rasheed MK. Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. Environ Sci Pollut Res. 2020;27. PubMed
Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, et al. Remediation techniques for elimination of heavy metal pollutants from soil: a review. Environ Res. 2022;214:113918. doi: 10.1016/j.envres.2022.113918. PubMed DOI
Sana S, Ramzan M, Ejaz S, Danish S, Salmen SH, Ansari MJ. Differential responses of chili varieties grown under cadmium stress. BMC Plant Biol. 2024;24:7. doi: 10.1186/s12870-023-04678-x. PubMed DOI PMC
Dawar K, Asif M, Irfan M, Mian IA, Khan B, Gul N, et al. Evaluating the efficacy of activated carbon in minimizing the risk of heavy metals contamination in spinach for safe consumption. ACS Omega. 2023;8:24323–31. doi: 10.1021/acsomega.3c01573. PubMed DOI PMC
Hossain ME, Shahrukh S, Hossain SA. Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. In: Environmental Degradation: Challenges and Strategies for Mitigation. Cham, Switzerland: Springer; 2022. p. 63–92.
Isinkaralar K, Koc I, Erdem R, Sevik H. Atmospheric Cd, Cr, and Zn deposition in several landscape plants in Mersin. Türkiye. Water Air Soil Pollut. 2022;233:120. doi: 10.1007/s11270-022-05607-8. DOI
Alhaji Adamu Y, Olaleye AA. Speciation, mobility and potential toxicity of metals (Cr Co, Cu and Mn) in soil samples from dumpsites in kano metropolis. FUDMA J Sci. 2022;6:270–7. doi: 10.33003/fjs-2022-0605-1487. DOI
Gao H, Yang X, Wang N, Sun M, Xiao Y, Peng F. Effects of different carbon types on the growth and chromium accumulation of peach trees under chromium stress. Agronomy. 2022;12:2814. doi: 10.3390/agronomy12112814. DOI
Huang S, Huang P, Hareem M, Tahzeeb-ul-Hassan M, Younis U, Dawar K, et al. Evaluating the hidden potential of deashed biochar in mitigating salinity stress for cultivation of fenugreek. Sci Rep. 2024;14:141. doi: 10.1038/s41598-023-49063-8. PubMed DOI PMC
Anwar T, Shehzadi A, Qureshi H, Shah MN, Danish S, Salmen SH, et al. Alleviation of cadmium and drought stress in wheat by improving growth and chlorophyll contents amended with GA3 enriched deashed biochar. Sci Rep. 2023;13:18503. doi: 10.1038/s41598-023-45670-7. PubMed DOI PMC
Huang S, Huang P, Masood S, Iqbal MM, Naz T, Danish S, et al. Enhancing maize growth through the synergistic impact of potassium enrich biochar and spermidine. BMC Plant Biol. 2024;24:1–18. doi: 10.1186/s12870-024-04722-4. PubMed DOI PMC
Shah SH, Hussain MB, Haider G, Haq TU, Zahir ZA, Danish S, et al. Acidified manure and nitrogen-enriched biochar showed short-term agronomic benefits on cotton–wheat cropping systems under alkaline arid field conditions. Sci Rep. 2023;13:22504. doi: 10.1038/s41598-023-48996-4. PubMed DOI PMC
Sarwar G, Anwar T, Malik M, Rehman H ur, Danish S, Alahmadi TA, et al. Evaluation of potassium-enriched biochar and GA3 effectiveness for Improving wheat growth under drought stress. BMC Plant Biol. 2023;23:615. PubMed PMC
Ashraf F, Chen Y. Synergistic effects of biochar and arbuscular mycorrhizal fungi on enhancing Elymus elymoides growth in saline coastal soil. Pakistan J Bot. 2023;55 SI:119–26.
Ibrahim MEH, Ali AYA, Elsiddig AMI, Zhou G, Nimir NEA, Agbna GHD, et al. Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pakistan J Bot. 2021;53:387–92.
Li X, Huang Y, Liang X, Huang L, Wei L, Zheng X, et al. Characterization of biochars from woody agricultural wastes and sorption behavior comparison of cadmium and atrazine. Biochar. 2022;4:27. doi: 10.1007/s42773-022-00132-7. DOI
Ramzan M, Jamshaid T, Ali L, Dawar K, Saba R, Jamshaid U, et al. Modulation of sunflower growth via regulation of antioxidants, oil content and gas exchange by arbuscular mycorrhizal fungi and quantum dot biochar under chromium stress. BMC Plant Biol. 2023;23:629. doi: 10.1186/s12870-023-04637-6. PubMed DOI PMC
Alotaibi MO, Ikram M, Alotaibi NM, Hussain GS, Ghoneim AM, Younis U, et al. Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress. 2023;10:100205. doi: 10.1016/j.stress.2023.100205. DOI
Adhikari S, Timms W, Mahmud MAP. Optimising water holding capacity and hydrophobicity of biochar for soil amendment – A review. Sci Total Environ. 2022;851:158043. doi: 10.1016/j.scitotenv.2022.158043. PubMed DOI
Sattar A, Ul-Allah S, Ijaz M, Sher A, Butt M, Abbas T, et al. Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun. 2022;50:263–72. doi: 10.1007/s42976-021-00171-z. DOI
Sedaghat M, Emam Y, Mokhtassi-Bidgoli A, Hazrati S, Lovisolo C, Visentin I, et al. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. Plants. 2021;10:1223. doi: 10.3390/plants10061223. PubMed DOI PMC
Luqman M, Shahbaz M, Maqsood MF, Farhat F, Zulfiqar U, Siddiqui MH, et al. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress. Plant Signal Behav. 2023;18:2262795. PubMed PMC
Tanwar R, Panghal A, Chaudhary G, Kumari A, Chhikara N. Nutritional, Phytochemical and Functional Potential of Sorghum: A Review. Food Chem Adv. 2023;3:100501.
Nishio T. Economic and Academic Importance of Radish. In: Nishio T, Kitashiba H, editors. The radish genome. 1. Cham: Springer; 2017. pp. 1–10.
El-Beltagi HS, Maraei RW, Shalaby TA, Aly AA. Metabolites, Nutritional Quality and Antioxidant Activity of Red Radish Roots Affected by Gamma Rays. Agronomy. 2022;12.
Mukherjee S, Chatterjee N, Sircar A, Maikap S, Singh A, Acharyya S, et al. A comparative analysis of heavy metal effects on medicinal plants. Appl Biochem Biotechnol. 2023;195:2483–518. doi: 10.1007/s12010-022-03938-0. PubMed DOI
Cwielag-Piasecka I, Jamroz E, Medy nska-Juraszek A, Bednik M, Kosyk B, Polláková N. Deashed Wheat-Straw Biochar as a Potential Superabsorbent for Pesticides. Materials. 2023; 16, 2185. PubMed PMC
Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res. 2014;21:11054–65. doi: 10.1007/s11356-014-3010-9. PubMed DOI
Petersen RG, Calvin LD. Sampling. In: Klute A, editor. Methods of Soil Analysis: Part 1 Physical and Mineralaogical Methods, 5.1. 2nd edition. Madison, WI, USA: John Wiley & Sons, Inc., American Society of Agronomy, Inc. and Soil Science Society of America, Inc.; 1986. p. 33–51.
Page AL, Miller RH, Keeny DR. Soil pH and lime requirement. In: Methods of Soil Analysis. 2nd edition. Madison: American Society of Agronomy; 1982. p. 199–208.
Rhoades JD. Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis, Part 3, Chemical Methods. Madison, WI, USA: Soil Science Society of America; 1996. p. 417–35.
Nelson DW a, Sommers L. Total carbon, organic carbon, and organic matter. Methods Soil Anal Part 2 Chem Microbiol Prop. 1983;9:539–79.
Bremner M. Nitrogen-total. In: Sumner DL, Sparks AL, Page PA, Helmke RH, Loeppert NP, Soltanpour AM, et al., editors. Methods of Soil Analysis Part 3. Chemical Methods-SSSA Book Series 5. Madison, WI, USA: John Wiley & Sons, Inc.; 1996. p. 1085–121.
Kuo S. Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis Part 3: Chemical Methods. SSSA, Madison, Wisconsin: John Wiley & Sons, Ltd; 2018. p. 869–919.
Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Madison, WI, USA: John Wiley & Sons, Ltd; 2016. p. 1022–30.
Gee GW, Bauder JW. Particle-size Analysis. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Madison, WI, USA: John Wiley & Sons, Inc.; 2018. p. 383–411.
Sardar R, Zulfiqar A, Ahmad S, Ali Shah A, Khalid Iqbal R, Hussain S, et al. Proteomic Changes in Various Plant Tissues Associated with Chromium Stress in Sunflower. Saudi J Biol Sci. 2021;:10.1016/j.sjbs.2021.12.042. PubMed PMC
Danish S, Kiran S, Fahad S, Ahmad N, Ali MA, Tahir FA, et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf. 2019;185:109706. doi: 10.1016/j.ecoenv.2019.109706. PubMed DOI
European Union. Heavy Metals in Wastes, European Commission on Environment. 2002;:http://ec.europa.eu/environment/waste/studies/pd.
Weatherley P. Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol. 1950;49:81–97.
Arnon DI. Copper Enzymes in Isolated Chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Durak I, Yurtarslanl Z, Canbolat O, Akyol Ö. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta. 1993;214:103–4. doi: 10.1016/0009-8981(93)90307-P. PubMed DOI
Cakmak I, Strbac D, Marschner H. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot. 1993;44:127–32. doi: 10.1093/jxb/44.1.127. DOI
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6. PubMed
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Hernández JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 2002;115:251–7. doi: 10.1034/j.1399-3054.2002.1150211.x. PubMed DOI
Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 2001;42:1265–73. doi: 10.1093/pcp/pce162. PubMed DOI
Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–55. PubMed
Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant. 1996;98:685–92. doi: 10.1034/j.1399-3054.1996.980402.x. DOI
Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot. 1996;78:389–98. doi: 10.1006/anbo.1996.0134. DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–7. doi: 10.1007/BF00018060. DOI
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. 3. Singapore: McGraw Hill Book International Co; 1997.
OriginLab Corporation. OriginPro. Northampton.: OriginLab; 2021.
Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological functions of strigolactones and their crosstalk with other phytohormones. Front Plant Sci. 2022;13:821563. doi: 10.3389/fpls.2022.821563. PubMed DOI PMC
Kaniganti S, Bhattacharya J, Petla BP, Reddy PS. Strigolactone, a neglected plant hormone, with a great potential for crop improvement: Crosstalk with other plant hormones. Environ Exp Bot. 2022;204:105072. doi: 10.1016/j.envexpbot.2022.105072. DOI
Shahid Z ul, Ali M, Shahzad K, Danish S, Alharbi SA, Ansari MJ. Author Correction: Enhancing maize productivity by mitigating alkaline soil challenges through acidified biochar and wastewater irrigation. Sci Rep. 2023;13:22544. PubMed PMC
Sheikh L, Younis U, Shahzad AS, Hareem M, Noor Elahi N, Danish S. Evaluating the effects of cadmium under saline conditions on leafy vegetables by using acidified biochar. Pakistan J Bot. 2023;55 SI:33–9.
Rahi AA, Hussain S, Hussain B, Baig KS, Tahir MS, Hussain GS, et al. Alleviation of Cd stress in maize by compost mixed biochar. J King Saud Univ - Sci. 2022;34:102014. doi: 10.1016/j.jksus.2022.102014. DOI
Wani KI, Zehra A, Choudhary S, Naeem M, Khan MMA, Khan R, et al. Exogenous strigolactone (GR24) positively regulates growth, photosynthesis, and improves glandular trichome attributes for enhanced artemisinin production in Artemisia annua. J Plant Growth Regul. 2023;42:4606–15. doi: 10.1007/s00344-022-10654-w. PubMed DOI PMC
Dawar K, Khan A, Mian IA, Khan B, Ali S, Ahmad S, et al. Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS One. 2022;17:e0267483. doi: 10.1371/journal.pone.0267483. PubMed DOI PMC
Ahmad Rahi A, Younis U, Ahmed N, Arif Ali M, Fahad S, Sultan H, et al. Toxicity of Cadmium and Nickel in the Context of Applied Activated Carbon Biochar for Improvement in Soil Fertility. Saudi J Biol Sci. 2021;:10.1016/j.sjbs.2021.09.035. PubMed PMC
Iqbal J, Kiran S, Hussain S, Iqbal RK, Ghafoor U, Younis U, et al. Acidified Biochar Confers Improvement in Quality and Yield Attributes of Sufaid Chaunsa Mango in Saline Soil. Horticulturae. 2021;7:418. doi: 10.3390/horticulturae7110418. DOI
Manzoor S, Habib-ur-Rahman M, Haider G, Ghafoor I, Ahmad S, Afzal M, et al. Biochar and slow-releasing nitrogen fertilizers improved growth, nitrogen use, yield, and fiber quality of cotton under arid climatic conditions. Environ Sci Pollut Res. 2022;29:13742–55. PubMed PMC
Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ Res. 2022;214:113821. doi: 10.1016/j.envres.2022.113821. PubMed DOI
Prichystalova J, Holatko J, Hammerschmiedt T, Datta R, Meena RS, Sudoma M, et al. Biochar Role in Soil Carbon Stabilization and Crop Productivity. In: Datta R, Meena RS, et al., editors. Soil Carbon Stabilization to Mitigate Climate Change. Singapore: Springer Singapore; 2021. pp. 1–46.
Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol Biochem. 2023;201:107872. doi: 10.1016/j.plaphy.2023.107872. PubMed DOI
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, et al. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ Sci\& Technol. 2022;56:16546–66. PubMed PMC
Lingwan M, Pradhan AA, Kushwaha AK, Dar MA, Bhagavatula L, Datta S. Photoprotective role of plant secondary metabolites: Biosynthesis, photoregulation, and prospects of metabolic engineering for enhanced protection under excessive light. Environ Exp Bot. 2023;209:105300. doi: 10.1016/j.envexpbot.2023.105300. DOI
Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, et al. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater. 2022;423:127021. doi: 10.1016/j.jhazmat.2021.127021. PubMed DOI
Zhang B, Du H, Yang S, Wu X, Liu W, Guo J, et al. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach (Prunus persica (L.) Batsch). Plants. 2023;12:1492. PubMed PMC