Physiological evidence of stress reduction during a summer Antarctic expedition with a significant influence of previous experience and vigor

. 2024 Feb 17 ; 14 (1) : 3981. [epub] 20240217

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38368474

Grantová podpora
No LM2018121 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_043/0009632 Operational Programme Research, Development and Innovation
CZ.02.1.01/0.0/0.0/17_043/0009632 Operational Programme Research, Development and Innovation

Odkazy

PubMed 38368474
PubMed Central PMC10874375
DOI 10.1038/s41598-024-54203-9
PII: 10.1038/s41598-024-54203-9
Knihovny.cz E-zdroje

Antarctica provides a unique environment for studying human adaptability, characterized by controlled conditions, limited sensory stimulation, and significant challenges in logistics and communication. This longitudinal study investigates the relationship between stress indicators, with a specific focus on mean sleep heart rate, during a COVID-19 quarantine and subsequent 83 days long summer Antarctic expedition at the J. G. Mendel Czech Antarctic Station. Our novel approach includes daily recordings of sleep heart rate and weekly assessments of emotions, stress, and sleep quality. Associations between variables were analyzed using the generalized least squares method, providing unique insights into nuances of adaptation. The results support previous findings by providing empirical evidence on the stress reducing effect of Antarctic summer expedition and highlight the importance of previous experience and positive emotions, with the novel contribution of utilizing physiological data in addition to psychological measures. High-frequency sampling and combination of psychological and physiological data addresses a crucial gap in the research of stress. This study contributes valuable knowledge to the field of psychophysiology and has implications for expedition planners, research organizations, teams in action settings, pandemic prevention protocols, global crises, and long-duration spaceflight missions. Comprehensive insights promote the well-being and success of individuals in extreme conditions.

Zobrazit více v PubMed

Suedfeld P, Weiss K. Antarctica: Natural laboratory and space analogue for psychological research. Environ. Behav. 2000;32:7–17. doi: 10.1177/00139160021972405. PubMed DOI

Lugg DJ. Antarctic medicine. JAMA. 2000;283:2082–2084. doi: 10.1001/jama.283.16.2082. PubMed DOI

Grevsmühl SV. Laboratory metaphors in Antarctic history: From nature to space. Ice Snow Cold War. 2019;14:211.

Palinkas LA, Suedfeld P. Psychological effects of polar expeditions. The Lancet. 2008;371:153–163. doi: 10.1016/S0140-6736(07)61056-3. PubMed DOI

Moraes MM, et al. Hormonal, autonomic cardiac and mood states changes during an Antarctic expedition: From ship travel to camping in Snow Island. Physiol. Behav. 2020;224:113069. doi: 10.1016/j.physbeh.2020.113069. PubMed DOI

Keeton, K. E. et al. Analog Assessment Tool Report (2011).

Patel ZS, et al. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity. 2020;6:33. doi: 10.1038/s41526-020-00124-6. PubMed DOI PMC

Scott RT, et al. Biomonitoring and precision health in deep space supported by artificial intelligence. Nat. Mach. Intell. 2023;5:196–207. doi: 10.1038/s42256-023-00617-5. DOI

Sandal GM, Leon GR, Palinkas L. Human challenges in polar and space environments. Rev. Environ. Sci. Biotechnol. 2006;5:281–296. doi: 10.1007/s11157-006-9000-8. DOI

Fahrenberg J, Myrtek M, Pawlik K, Perrez M. Ambulatory assessment-monitoring behavior in daily life settings. Eur. J. Psychol. Assess. 2007;23:206–213. doi: 10.1027/1015-5759.23.4.206. DOI

Kazi S, et al. Team physiological dynamics: A critical review. Hum. Factors. 2021;63:32–65. doi: 10.1177/0018720819874160. PubMed DOI

Bartone PT, Krueger GP, Bartone JV. Individual differences in adaptability to isolated, confined, and extreme environments. Aerosp. Med. Hum. Perform. 2018;89:536–546. doi: 10.3357/AMHP.4951.2018. PubMed DOI

Golden SJ, Chang C-HD, Kozlowski SWJ. Teams in isolated, confined, and extreme (ICE) environments: Review and integration. J. Organ. Behav. 2018;39:701–715. doi: 10.1002/job.2288. DOI

Nelson BW, et al. Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. NPJ Digit. Med. 2020;3:90. doi: 10.1038/s41746-020-0297-4. PubMed DOI PMC

Valentini M, Parati G. Variables influencing heart rate. Prog. Cardiovasc. Dis. 2009;52:11–19. doi: 10.1016/j.pcad.2009.05.004. PubMed DOI

Verrier RL, Tan A. Heart rate, autonomic markers, and cardiac mortality. Heart Rhythm. 2009;6:S68–S75. doi: 10.1016/j.hrthm.2009.07.017. PubMed DOI PMC

Campbell J, Ehlert U. Acute psychosocial stress: Does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37:1111–1134. doi: 10.1016/j.psyneuen.2011.12.010. PubMed DOI

Kop, W. J. & Kupper, H. M. Fatigue and stress. In Stress: Concepts, Cognition, Emotion, and Behavior 345–350 (Elsevier, 2016).

Calvo, M. G. & Gutierrez-Garcia, A. Cognition and stress. In Stress: Concepts, Cognition, Emotion, and Behavior 139–144 (Elsevier, 2016).

Abou-Ismail UA, Burman OHP, Nicol CJ, Mendl M. Can sleep behaviour be used as an indicator of stress in group-housed rats (Rattus norvegicus)? Anim. Welfare. 2007;16:185–188. doi: 10.1017/S0962728600031298. DOI

Kim E-J, Dimsdale JE. The effect of psychosocial stress on sleep: A review of polysomnographic evidence. Behav. Sleep Med. 2007;5:256–278. doi: 10.1080/15402000701557383. PubMed DOI PMC

Kalmbach DA, Anderson JR, Drake CL. The impact of stress on sleep: Pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders. J Sleep Res. 2018;27:e12710. doi: 10.1111/jsr.12710. PubMed DOI PMC

Nicolas M, Martinent G, Palinkas L, Suedfeld P. Dynamics of stress and recovery and relationships with perceived environmental mastery in extreme environments. J. Environ. Psychol. 2022;83:101853. doi: 10.1016/j.jenvp.2022.101853. DOI

Sandal GM, van deVijver FJR, Smith N. Psychological hibernation in Antarctica. Front. Psychol. 2018;9:2235. doi: 10.3389/fpsyg.2018.02235. PubMed DOI PMC

Pattyn N, Van Puyvelde M, Fernandez-Tellez H, Roelands B, Mairesse O. From the midnight sun to the longest night: Sleep in Antarctica. Sleep Med. Rev. 2018;37:159–172. doi: 10.1016/j.smrv.2017.03.001. PubMed DOI

Pattyn N, et al. Sleep during an Antarctic summer expedition: New light on ‘polar insomnia’. J. Appl. Physiol. 2017;122:788–794. doi: 10.1152/japplphysiol.00606.2016. PubMed DOI

Wittmann M, Dinich J, Merrow M, Roenneberg T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006;23:497–509. doi: 10.1080/07420520500545979. PubMed DOI

Tassino B, Horta S, Santana N, Levandovski R, Silva A. Extreme late chronotypes and social jetlag challenged by Antarctic conditions in a population of university students from Uruguay. Sleep Sci. 2016;9:20–28. doi: 10.1016/j.slsci.2016.01.002. PubMed DOI PMC

Farrace S, et al. Reduced sympathetic outflow and adrenal secretory activity during a 40-day stay in the Antarctic. Int. J. Psychophysiol. 2003;49:17–27. doi: 10.1016/S0167-8760(03)00074-6. PubMed DOI

Maggioni MA, et al. Reduced vagal modulations of heart rate during overwintering in Antarctica. Sci. Rep. 2020;10:21810. doi: 10.1038/s41598-020-78722-3. PubMed DOI PMC

Çotuk HB, Duru AD, Aktaş Ş. Monitoring autonomic and central nervous system activity by permutation entropy during short sojourn in antarctica. Entropy. 2019;21:893. doi: 10.3390/e21090893. DOI

Harinath K, et al. Autonomic nervous system and adrenal response to cold in man at Antarctica. Wilderness Environ. Med. 2005;16:81–91. doi: 10.1580/PR30-04.1. PubMed DOI

Peri A, Scarlata C, Barbarito M. Preliminary studies on the psychological adjustment in the Italian Antarctic summer campaigns. Environ. Behav. 2000;32:72–83. doi: 10.1177/00139160021972432. PubMed DOI

Palinkas LA, Suedfeld P, Steel GD. Psychological functioning among members of a small polar expedition. Aviat. Space Environ. Med. 1995;66:943–950. PubMed

Ballesio, A. et al. Sleep and daily positive emotions; Is heart rate variability a mediator? J. Psychophysiol. (2022).

Lutsenko DG, Danylenko KM, Shylo OV, Babiychuk GO, Moiseyenko YV. Two types of autonomic regulation of heart rhythm in human during the over-wintering in the Antarctica. Heart. 2018;50:70.

James GD, Ice GH. Epilog: Summary and future directions. In: James GD, Ice GH, editors. Measuring Stress in Humans: A Practical Guide for the Field. Cambridge University Press; 2019. pp. 266–268.

Landon LB, et al. The behavioral biology of teams: Multidisciplinary contributions to social dynamics in isolated, confined, and extreme environments. Front. Psychol. 2019;10:2571. doi: 10.3389/fpsyg.2019.02571. PubMed DOI PMC

Kok BE, et al. How positive emotions build physical health: Perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychol. Sci. 2013;24:1123–1132. doi: 10.1177/0956797612470827. PubMed DOI

Behnke M, et al. The undoing effect of positive emotions: A meta-analytic review. Emotion Rev. 2023;15:45–62. doi: 10.1177/17540739221104457. DOI

Weiss NH, Schick MR, Waite EE, Haliczer LA, Dixon-Gordon KL. Association of positive emotion dysregulation to resting heart rate variability: The influence of positive affect intensity. Pers. Individ. Differ. 2021;173:110607. doi: 10.1016/j.paid.2020.110607. PubMed DOI PMC

Penzel T, Kantelhardt JW, Lo C-C, Voigt K, Vogelmeier C. Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology. 2003;28:S48–S53. doi: 10.1038/sj.npp.1300146. PubMed DOI

Verrier RL, Josephson ME. Impact of sleep on arrhythmogenesis. Circ. Arrhythm Electrophysiol. 2009;2:450–459. doi: 10.1161/CIRCEP.109.867028. PubMed DOI PMC

Key FM, et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 2018;14:e1007298. doi: 10.1371/journal.pgen.1007298. PubMed DOI PMC

Castellani JW, Young AJ. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 2016;196:63–74. doi: 10.1016/j.autneu.2016.02.009. PubMed DOI

Smith TW, Deits-Lebehn C, Williams PG, Baucom BRW, Uchino BN. Toward a social psychophysiology of vagally mediated heart rate variability: Concepts and methods in self-regulation, emotion, and interpersonal processes. Soc. Pers. Psychol. Compass. 2020;14:e12516. doi: 10.1111/spc3.12516. DOI

Bourdillon N, Yazdani S, Schmitt L, Millet GP. Effects of COVID-19 lockdown on heart rate variability. PLoS ONE. 2020;15:e0242303. doi: 10.1371/journal.pone.0242303. PubMed DOI PMC

Schönfeld P, Preusser F, Margraf J. Costs and benefits of self-efficacy: Differences of the stress response and clinical implications. Neurosci. Biobehav. Rev. 2017;75:40–52. doi: 10.1016/j.neubiorev.2017.01.031. PubMed DOI

Collet G, et al. Altitude and seasonality impact on sleep in Antarctica. Aerosp. Med. Hum. Perform. 2015;86:392–396. doi: 10.3357/AMHP.4159.2015. PubMed DOI

Meers J, Stout-Aguilar J, Nowakowski S, et al. Sex differences in sleep health. In: Grandner MA, et al., editors. Sleep and Health. Academic Press; 2019. pp. 21–29.

Speed C, et al. Measure by measure: Resting heart rate across the 24-hour cycle. PLOS Digit. Health. 2023;2:e0000236. doi: 10.1371/journal.pdig.0000236. PubMed DOI PMC

Johansen CD, et al. Resting, night-time, and 24 h heart rate as markers of cardiovascular risk in middle-aged and elderly men and women with no apparent heart disease. Eur. Heart J. 2013;34:1732–1739. doi: 10.1093/eurheartj/ehs449. PubMed DOI

McCarter SJ, et al. Physiological markers of sleep quality: A scoping review. Sleep Med. Rev. 2022;64:101657. doi: 10.1016/j.smrv.2022.101657. PubMed DOI

Hughes KA, Convey P. Implications of the COVID-19 pandemic for Antarctica. Antarct. Sci. 2020;32:426–439. doi: 10.1017/S095410202000053X. DOI

Abbass K, et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022;29:42539–42559. doi: 10.1007/s11356-022-19718-6. PubMed DOI PMC

Alexander KA, Marx K, Hunt L, Zhang M. Antarctic representation in print media during the emergence of COVID-19. Antarct. Sci. 2022;34:180–190. doi: 10.1017/S0954102022000049. DOI

Tafforin C. Humans’ 3R-adaptation for space colonization. J. Humanit. Soc. Sci. Stud. 2020;2:72–82.

Button KS, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475. PubMed DOI

Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2:e124. doi: 10.1371/journal.pmed.0020124. PubMed DOI PMC

Harrison XA. A brief introduction to the analysis of time-series data from biologging studies. Philos. Trans. R. Soc. B. 2021;376:20200227. doi: 10.1098/rstb.2020.0227. PubMed DOI PMC

De La Torre GG, et al. Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight. Acta Astronaut. 2012;81:587–599. doi: 10.1016/j.actaastro.2012.08.013. DOI

Gupta V, Sharma VK. Skin typing: Fitzpatrick grading and others. Clin. Dermatol. 2019;37:430–436. doi: 10.1016/j.clindermatol.2019.07.010. PubMed DOI

Thorsen, S. Time and Date AS: Sunrise and Sunset Calculator—City Lookup (2024).

Gillinov S, et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med. Sci. Sports Exerc. 2017;49:1697–1703. doi: 10.1249/MSS.0000000000001284. PubMed DOI

Støve MP, Haucke E, Nymann ML, Sigurdsson T, Larsen BT. Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. J. Sports Sci. 2019;37:895–901. doi: 10.1080/02640414.2018.1535563. PubMed DOI

Tedesco S, et al. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS ONE. 2019;14:e0216891. doi: 10.1371/journal.pone.0216891. PubMed DOI PMC

Stuchlíková I, Man F, Hagtvet K. Dotazník k měření afektivních stavů: Konfirmační faktorová analýza krátké české verze. Cesk Psychol. 2005;49:459–467.

Shacham S. A shortened version of the profile of mood states. J. Pers. Assess. 1983;47:305–306. doi: 10.1207/s15327752jpa4703_14. PubMed DOI

Figalová N, Charvát M. The perceived stress scale: Reliability and validity study in the Czech Republic. Cesk Psychol. 2021;65:46–59. doi: 10.51561/cspsych.65.1.46. DOI

Buysse DJ, et al. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4. PubMed DOI

Manková D, et al. Reliability and validity of the Czech version of the Pittsburgh sleep quality index in patients with sleep disorders and healthy controls. Biomed. Res. Int. 2021;2021:1–9. doi: 10.1155/2021/5576348. PubMed DOI PMC

Smith, M. FITfileR: Read FIT Files Using Only Native R Code (2022).

Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer; 2000.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...