RNA-related DNA damage and repair: The role of N7-methylguanosine in the cell nucleus exposed to UV light
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
38370261
PubMed Central
PMC10869776
DOI
10.1016/j.heliyon.2024.e25599
PII: S2405-8440(24)01630-X
Knihovny.cz E-resources
- Keywords
- DNA repair, RNA methylation, mRNA, miRNA, snRNA,
- Publication type
- Journal Article MeSH
BACKGROUND: Chemical modifications in mRNAs, tRNAs, rRNAs, and non-coding RNAs stabilize these nucleic acids and regulate their function. In addition to regulating the translation of genetic information from mRNA to proteins, it has been revealed that modifications in RNAs regulate repair processes in the genome. METHODS: Using local laser microirradiation, confocal microscopy, dot blots, and mass spectrometry we studied the role of N7-methylguanosine (m7G), which is co-transcriptionally installed in RNA. RESULTS: Here, we show that after UVC and UVA irradiation, the level of m7G RNA is increased initially in the cytoplasm, and after local laser microirradiation, m7G RNA is highly abundant in UVA-damaged chromatin. This process is poly(ADP-ribose) polymerase (PARP)-dependent, but not accompanied by changes in the level of m7G-writers, including methyltransferases RNMT, METTL1, and WBSCR22. We also observed that METTL1 deficiency does not affect the recruitment of m7G RNA to microirradiated chromatin. Analyzing the levels of mRNA, let-7e, and miR-203a in both the cytoplasm and the cell nucleus, we revealed that UVC irradiation changed the level of mRNA, and significantly increased the pool of both let-7e and miR-203a, which correlated with radiation-induced m7G RNA increase in the cytoplasm. CONCLUSIONS: Irradiation by UV light increases the m7G RNA pool in the cytoplasm and in the microirradiated genome. Thus, epigenetically modified RNAslikely contribute to DNA damage responses or m7G signals the presence of RNA damage.
See more in PubMed
Dai X., Zhang S., Zaleta-Rivera K. RNA: interactions drive functionalities. Mol. Biol. Rep. 2020;47(2):1413–1434. PubMed PMC
Avcilar-Kucukgoze I., Kashina A. Hijacking tRNAs from translation: regulatory functions of tRNAs in Mammalian cell physiology. Front. Mol. Biosci. 2020;7 PubMed PMC
Lindstrom M.S., Jurada D., Bursac S., Orsolic I., Bartek J., Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene. 2018;37(18):2351–2366. PubMed PMC
Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019;234(5):5451–5465. PubMed
Rogalska M.E., Vivori C., Valcarcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 2023;24(4):251–269. PubMed
Katahira J. Nuclear export of messenger RNA. Genes. 2015;6(2):163–184. PubMed PMC
Barbieri I., Kouzarides T. Role of RNA modifications in cancer. Nat. Rev. Cancer. 2020;20(6):303–322. PubMed
Arango D., Sturgill D., Alhusaini N., Dillman A.A., Sweet T.J., Hanson G., Hosogane M., Sinclair W.R., Nanan K.K., Mandler M.D., Fox S.D., Zengeya T.T., Andresson T., Meier J.L., Coller J., Oberdoerffer S. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7) 1872-1886. PubMed PMC
Cui L., Ma R., Cai J., Guo C., Chen Z., Yao L., Wang Y., Fan R., Wang X., Shi Y. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7(1):334. PubMed PMC
Zhu L.R., Ni W.J., Cai M., Dai W.T., Zhou H. Advances in RNA epigenetic modifications in Hepatocellular Carcinoma and potential targeted Intervention strategies. Front. Cell Dev. Biol. 2021;9 PubMed PMC
Nombela P., Miguel-Lopez B., Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol. Cancer. 2021;20(1):18. PubMed PMC
Xiang Y., Laurent B., Hsu C.H., Nachtergaele S., Lu Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., Ling D., Hsu P.H., Zou L., Jambhekar A., He C., Shi Y. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543(7646):573–576. PubMed PMC
Legartova S., Svobodova Kovarikova A., Behalova Suchankova J., Polasek-Sedlackova H., Bartova E. Early recruitment of PARP-dependent m(8)A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol. 2022;19(1):1153–1171. PubMed PMC
Svobodova Kovarikova A., Stixova L., Kovarik A., Bartova E. PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin. Epigenet. Chromatin. 2023;16(1):26. PubMed PMC
Svobodova Kovarikova A., Stixova L., Kovarik A., Komurkova D., Legartova S., Fagherazzi P., Bartova E. N(6)-Adenosine methylation in RNA and a Reduced m3G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions. Cells. 2020;9(2) PubMed PMC
Zhang J. Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell Biosci. 2017;7:24. PubMed PMC
Ikura M., Furuya K., Fukuto A., Matsuda R., Adachi J., Matsuda T., Kakizuka A., Ikura T. Coordinated regulation of TIP60 and poly(ADP-ribose) polymerase 1 in damaged-chromatin dynamics. Mol. Cell Biol. 2016;36(10):1595–1607. PubMed PMC
Hopkins J.L., Lan L., Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36(5–6):278–293. PubMed PMC
Torgovnick A., Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015;6:157. PubMed PMC
Huang R., Zhou P.K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254. PubMed PMC
Lee K.Y., Dutta A. Chk1 promotes non-homologous end joining in G1 through direct phosphorylation of ASF1A. Cell Rep. 2021;34(4) PubMed PMC
Luo Y., Yao Y., Wu P., Zi X., Sun N., He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J. Hematol. Oncol. 2022;15(1):63. PubMed PMC
Chu J.M., Ye T.T., Ma C.J., Lan M.D., Liu T., Yuan B.F., Feng Y.Q. Existence of internal N7-methylguanosine modification in mRNA determined by Differential Enzyme treatment Coupled with mass spectrometry analysis. ACS Chem. Biol. 2018;13(12):3243–3250. PubMed
Zhang L.S., Liu C., Ma H., Dai Q., Sun H.L., Luo G., Zhang Z., Zhang L., Hu L., Dong X., He C. Transcriptome-wide Mapping of internal N(7)-methylguanosine Methylome in Mammalian mRNA. Mol Cell. 2019;74(6):1304–1316 e8. PubMed PMC
Cheng W., Gao A., Lin H., Zhang W. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncolytics. 2022;26:27–34. PubMed PMC
Li J., Wang L., Hahn Q., Nowak R.P., Viennet T., Orellana E.A., Roy Burman S.S., Yue H., Hunkeler M., Fontana P., Wu H., Arthanari H., Fischer E.S., Gregory R.I. Structural basis of regulated m(7)G tRNA modification by METTL1-WDR4. Nature. 2023;613(7943):391–397. PubMed PMC
Lin S., Liu Q., Lelyveld V.S., Choe J., Szostak J.W., Gregory R.I. Mettl1/Wdr4-Mediated m(7)G tRNA Methylome is required for normal mRNA translation and embryonic stem cell Self-Renewal and Differentiation. Mol Cell. 2018;71(2):244–255 e5. PubMed PMC
Haag S., Kretschmer J., Bohnsack M.T. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA. 2015;21(2):180–187. PubMed PMC
Sedlackova H., Rask M.B., Gupta R., Choudhary C., Somyajit K., Lukas J. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature. 2020;587(7833):297–302. PubMed
Stixova L., Sehnalova P., Legartova S., Suchankova J., Hruskova T., Kozubek S., Sorokin D.V., Matula P., Raska I., Kovarik A., Fulnecek J., Bartova E. HP1beta-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenet. Chromatin. 2014;7(1):39. PubMed PMC
Kellner S., Ochel A., Thuring K., Spenkuch F., Neumann J., Sharma S., Entian K.D., Schneider D., Helm M. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 2014;42(18):e142. PubMed PMC
Thuring K., Schmid K., Keller P., Helm M. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods. 2016;107:48–56. PubMed
Pandolfini L., Barbieri I., Bannister A.J., Hendrick A., Andrews B., Webster N., Murat P., Mach P., Brandi R., Robson S.C., Migliori V., Alendar A., d'Onofrio M., Balasubramanian S., Kouzarides T. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278–1290 e9. PubMed PMC
Bartova E., Foltankova V., Legartova S., Sehnalova P., Sorokin D.V., Suchankova J., Kozubek S. Coilin is rapidly recruited to UVA-induced DNA lesions and gamma-radiation affects localized movement of Cajal bodies. Nucleus. 2014;5(3):460–468. PubMed PMC
Bartova E., Legartova S., Krejci J., Reznickova P., Kovarikova A.S., Suchankova J., Fedr R., Smirnov E., Hornacek M., Raska I. Depletion of A-type lamins and Lap2alpha reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2alpha protein is responsible for compactness of irradiated chromatin. J. Cell. Biochem. 2018;119(10):8146–8162. PubMed