• This record comes from PubMed

RNA-related DNA damage and repair: The role of N7-methylguanosine in the cell nucleus exposed to UV light

. 2024 Feb 29 ; 10 (4) : e25599. [epub] 20240207

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Links

PubMed 38370261
PubMed Central PMC10869776
DOI 10.1016/j.heliyon.2024.e25599
PII: S2405-8440(24)01630-X
Knihovny.cz E-resources

BACKGROUND: Chemical modifications in mRNAs, tRNAs, rRNAs, and non-coding RNAs stabilize these nucleic acids and regulate their function. In addition to regulating the translation of genetic information from mRNA to proteins, it has been revealed that modifications in RNAs regulate repair processes in the genome. METHODS: Using local laser microirradiation, confocal microscopy, dot blots, and mass spectrometry we studied the role of N7-methylguanosine (m7G), which is co-transcriptionally installed in RNA. RESULTS: Here, we show that after UVC and UVA irradiation, the level of m7G RNA is increased initially in the cytoplasm, and after local laser microirradiation, m7G RNA is highly abundant in UVA-damaged chromatin. This process is poly(ADP-ribose) polymerase (PARP)-dependent, but not accompanied by changes in the level of m7G-writers, including methyltransferases RNMT, METTL1, and WBSCR22. We also observed that METTL1 deficiency does not affect the recruitment of m7G RNA to microirradiated chromatin. Analyzing the levels of mRNA, let-7e, and miR-203a in both the cytoplasm and the cell nucleus, we revealed that UVC irradiation changed the level of mRNA, and significantly increased the pool of both let-7e and miR-203a, which correlated with radiation-induced m7G RNA increase in the cytoplasm. CONCLUSIONS: Irradiation by UV light increases the m7G RNA pool in the cytoplasm and in the microirradiated genome. Thus, epigenetically modified RNAslikely contribute to DNA damage responses or m7G signals the presence of RNA damage.

See more in PubMed

Dai X., Zhang S., Zaleta-Rivera K. RNA: interactions drive functionalities. Mol. Biol. Rep. 2020;47(2):1413–1434. PubMed PMC

Avcilar-Kucukgoze I., Kashina A. Hijacking tRNAs from translation: regulatory functions of tRNAs in Mammalian cell physiology. Front. Mol. Biosci. 2020;7 PubMed PMC

Lindstrom M.S., Jurada D., Bursac S., Orsolic I., Bartek J., Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene. 2018;37(18):2351–2366. PubMed PMC

Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019;234(5):5451–5465. PubMed

Rogalska M.E., Vivori C., Valcarcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 2023;24(4):251–269. PubMed

Katahira J. Nuclear export of messenger RNA. Genes. 2015;6(2):163–184. PubMed PMC

Barbieri I., Kouzarides T. Role of RNA modifications in cancer. Nat. Rev. Cancer. 2020;20(6):303–322. PubMed

Arango D., Sturgill D., Alhusaini N., Dillman A.A., Sweet T.J., Hanson G., Hosogane M., Sinclair W.R., Nanan K.K., Mandler M.D., Fox S.D., Zengeya T.T., Andresson T., Meier J.L., Coller J., Oberdoerffer S. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7) 1872-1886. PubMed PMC

Cui L., Ma R., Cai J., Guo C., Chen Z., Yao L., Wang Y., Fan R., Wang X., Shi Y. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7(1):334. PubMed PMC

Zhu L.R., Ni W.J., Cai M., Dai W.T., Zhou H. Advances in RNA epigenetic modifications in Hepatocellular Carcinoma and potential targeted Intervention strategies. Front. Cell Dev. Biol. 2021;9 PubMed PMC

Nombela P., Miguel-Lopez B., Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol. Cancer. 2021;20(1):18. PubMed PMC

Xiang Y., Laurent B., Hsu C.H., Nachtergaele S., Lu Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., Ling D., Hsu P.H., Zou L., Jambhekar A., He C., Shi Y. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543(7646):573–576. PubMed PMC

Legartova S., Svobodova Kovarikova A., Behalova Suchankova J., Polasek-Sedlackova H., Bartova E. Early recruitment of PARP-dependent m(8)A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol. 2022;19(1):1153–1171. PubMed PMC

Svobodova Kovarikova A., Stixova L., Kovarik A., Bartova E. PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin. Epigenet. Chromatin. 2023;16(1):26. PubMed PMC

Svobodova Kovarikova A., Stixova L., Kovarik A., Komurkova D., Legartova S., Fagherazzi P., Bartova E. N(6)-Adenosine methylation in RNA and a Reduced m3G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions. Cells. 2020;9(2) PubMed PMC

Zhang J. Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell Biosci. 2017;7:24. PubMed PMC

Ikura M., Furuya K., Fukuto A., Matsuda R., Adachi J., Matsuda T., Kakizuka A., Ikura T. Coordinated regulation of TIP60 and poly(ADP-ribose) polymerase 1 in damaged-chromatin dynamics. Mol. Cell Biol. 2016;36(10):1595–1607. PubMed PMC

Hopkins J.L., Lan L., Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36(5–6):278–293. PubMed PMC

Torgovnick A., Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015;6:157. PubMed PMC

Huang R., Zhou P.K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254. PubMed PMC

Lee K.Y., Dutta A. Chk1 promotes non-homologous end joining in G1 through direct phosphorylation of ASF1A. Cell Rep. 2021;34(4) PubMed PMC

Luo Y., Yao Y., Wu P., Zi X., Sun N., He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J. Hematol. Oncol. 2022;15(1):63. PubMed PMC

Chu J.M., Ye T.T., Ma C.J., Lan M.D., Liu T., Yuan B.F., Feng Y.Q. Existence of internal N7-methylguanosine modification in mRNA determined by Differential Enzyme treatment Coupled with mass spectrometry analysis. ACS Chem. Biol. 2018;13(12):3243–3250. PubMed

Zhang L.S., Liu C., Ma H., Dai Q., Sun H.L., Luo G., Zhang Z., Zhang L., Hu L., Dong X., He C. Transcriptome-wide Mapping of internal N(7)-methylguanosine Methylome in Mammalian mRNA. Mol Cell. 2019;74(6):1304–1316 e8. PubMed PMC

Cheng W., Gao A., Lin H., Zhang W. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncolytics. 2022;26:27–34. PubMed PMC

Li J., Wang L., Hahn Q., Nowak R.P., Viennet T., Orellana E.A., Roy Burman S.S., Yue H., Hunkeler M., Fontana P., Wu H., Arthanari H., Fischer E.S., Gregory R.I. Structural basis of regulated m(7)G tRNA modification by METTL1-WDR4. Nature. 2023;613(7943):391–397. PubMed PMC

Lin S., Liu Q., Lelyveld V.S., Choe J., Szostak J.W., Gregory R.I. Mettl1/Wdr4-Mediated m(7)G tRNA Methylome is required for normal mRNA translation and embryonic stem cell Self-Renewal and Differentiation. Mol Cell. 2018;71(2):244–255 e5. PubMed PMC

Haag S., Kretschmer J., Bohnsack M.T. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA. 2015;21(2):180–187. PubMed PMC

Sedlackova H., Rask M.B., Gupta R., Choudhary C., Somyajit K., Lukas J. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature. 2020;587(7833):297–302. PubMed

Stixova L., Sehnalova P., Legartova S., Suchankova J., Hruskova T., Kozubek S., Sorokin D.V., Matula P., Raska I., Kovarik A., Fulnecek J., Bartova E. HP1beta-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenet. Chromatin. 2014;7(1):39. PubMed PMC

Kellner S., Ochel A., Thuring K., Spenkuch F., Neumann J., Sharma S., Entian K.D., Schneider D., Helm M. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 2014;42(18):e142. PubMed PMC

Thuring K., Schmid K., Keller P., Helm M. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods. 2016;107:48–56. PubMed

Pandolfini L., Barbieri I., Bannister A.J., Hendrick A., Andrews B., Webster N., Murat P., Mach P., Brandi R., Robson S.C., Migliori V., Alendar A., d'Onofrio M., Balasubramanian S., Kouzarides T. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278–1290 e9. PubMed PMC

Bartova E., Foltankova V., Legartova S., Sehnalova P., Sorokin D.V., Suchankova J., Kozubek S. Coilin is rapidly recruited to UVA-induced DNA lesions and gamma-radiation affects localized movement of Cajal bodies. Nucleus. 2014;5(3):460–468. PubMed PMC

Bartova E., Legartova S., Krejci J., Reznickova P., Kovarikova A.S., Suchankova J., Fedr R., Smirnov E., Hornacek M., Raska I. Depletion of A-type lamins and Lap2alpha reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2alpha protein is responsible for compactness of irradiated chromatin. J. Cell. Biochem. 2018;119(10):8146–8162. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...