Evaluation of inflammatory biomarkers and vitamins in hospitalized patients with SARS-CoV-2 infection and post-COVID syndrome
Jazyk angličtina Země Německo Médium electronic-print
Typ dokumentu časopisecké články
PubMed
38374668
DOI
10.1515/cclm-2023-1297
PII: cclm-2023-1297
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, kynurenine, neopterin, post-COVID, tryptophan, vitamins,
- MeSH
- biologické markery * krev MeSH
- COVID-19 * krev MeSH
- dospělí MeSH
- hospitalizace MeSH
- kynurenin * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- neopterin * krev moč MeSH
- postakutní syndrom COVID-19 MeSH
- SARS-CoV-2 * izolace a purifikace MeSH
- senioři MeSH
- tryptofan * krev MeSH
- vitamin A krev MeSH
- vitamin D krev MeSH
- vitamin E krev MeSH
- vitaminy krev MeSH
- zánět krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery * MeSH
- kynurenin * MeSH
- neopterin * MeSH
- tryptofan * MeSH
- vitamin A MeSH
- vitamin D MeSH
- vitamin E MeSH
- vitaminy MeSH
OBJECTIVES: Concentrations of neopterin, kynurenine and kynurenine/tryptophan ratios predict prognosis and the need for oxygen therapy in patients hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aims of the present study were to evaluate the changes of these biomarkers early in the course of infection, the association with the prior coronavirus disease (COVID-19) vaccination and therapeutic administration of Anti-SARS-CoV-2 monoclonal antibodies, investigation of other potential biomarkers including neuropilin, 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine in patients hospitalized with SARS-CoV-2 infection and an assessment of these biomarkers and vitamins A, E and D in patients with post-COVID syndrome. METHODS: Urine and blood samples were obtained on the 1st to the 4th day and 4th to 7th day from 108 patients hospitalized with COVID-19. Chromatography tandem mass spectrometry methods were used to analyse neopterin, kynurenine, tryptophan, liposoluble vitamins, and DNA damage biomarkers. RESULTS: A statistically significant decrease of neopterin, kynurenine and kynurenine/tryptophan ratios was observed on after 4th to 7th day of hospitalization, and concentrations of these biomarkers were increased in patients with poor prognosis and subsequent post-COVID syndrome. The concentrations of remaining biomarker and vitamins were not associated with outcomes, although markedly decreased concentrations of vitamin A, E and D were noted. CONCLUSIONS: The concentrations of neopterin, kynurenine and kynurenine/tryptophan ratios decrease during the course of infection SARS-CoV-2 and are associated with the post-COVID syndrome. No other prognostic biomarkers were identified.
Deparment of Infectious Diseases University Hospital Hradec Králové Hradec Králové Czech Republic
Department of Oncology Faculty of Medicine and Dentistry Palacký University Olomouc Czech Republic
Department of Pneumology University Hospital Hradec Králové Hradec Králové Czech Republic
Zobrazit více v PubMed
Anka, AU, Tahir, MI, Abubakar, SD, Alsabbagh, M, Zian, Z, Hamedifar, H, et al.. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2020;93:e12998. https://doi.org/10.1111/sji.12998 . DOI
World Health Organization . Coronavirus disease (COVID-19): Post COVID-19 condition (who.int). https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition [Accessed: 13 November 2023].
Fernández-de-las-Peñas, C, Palacios-Ceña, D, Gómez-Mayordomo, V, Cuadrado, ML, Florencio, LL. Defining post-COVID symptoms (Post-Acute COVID, long COVID, persistent post-COVID): an integrative classification. Int J Environ Res Publ Health 2021;18:2621. https://doi.org/10.3390/ijerph18052621 . DOI
Melichar, B, Spisarova, M, Bartouskova, M, Kujovska Krcmova, L, Javorska, L, Studentova, H. Neopterin as a biomarker of immune response in cancer patients. Ann Transl Med 2017;5:280. https://doi.org/10.21037/atm.2017.06.29 . DOI
Neopterin . Neopterin – English. http://www.neopterin.net/neopterin_e.pdf [Accessed 13 Nov 2023].
Plebani, M. Why C-reactive protein is one of the most requested tests in clinical laboratories? Clin Chem Lab Med 2023;61:1540–5. https://doi.org/10.1515/cclm-2023-0086 . DOI
Robertson, J, Gostner, JM, Nilsson, S, Andersson, LM, Fuchs, D, Gisslen, M. Serum neopterin levels in relation to mild and severe COVID-19. BMC Infect Dis 2020;20:942. https://doi.org/10.1186/s12879-020-05671-7 . DOI
Hailemichael, W, Kiros, M, Akelew, Y, Getu, S, Andualem, H. Neopterin: a promising candidate biomarker for severe COVID-19. J Inflamm Res 2021;14:245–51. https://doi.org/10.2147/jir.s290264 . DOI
Kujovska Krcmova, L, Matousova, K, Javorska, L, Smahel, P, Skala, M, Koblizek, V, et al.. Neopterin and kynurenice in serum and urine as prognostic biomarkers in hospitalized patients with delta and omicron variant SARS-CoV-2 infection. Clin Chem Lab Med 2023;61:2053–64. https://doi.org/10.1515/cclm-2023-0381 . DOI
Zheng, B, Cao, KY, Chan, CPY, Choi, JWY, Leung, W, Leung, M, et al.. Serum neopterin for early assessment of severity of severe acute respiratory syndrome. Clin Immunol 2005;116:18–26. https://doi.org/10.1016/j.clim.2005.03.009 . DOI
Ozger, HS, Dizbay, M, Corbacioglu, SK, Aysert, P, Demirbas, Z, Tunccan, OG, et al.. The prognostic role of neopterin in COVID-19 patients. J Med Virol 2021;93:1520–5. https://doi.org/10.1002/jmv.26472 . DOI
Valavanidis, A, Vlachogianni, T, Fiotakis, C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2009;27:120–39. https://doi.org/10.1080/10590500902885684 . DOI
Çalışkan-Can, E, Fırat, H, Ardıç, S, Şimşek, B, Torun, M, Yardim-Akaydin, S. Increased levels of 8-hydroxydeoxyguanosine and its relationship with lipid peroxidation and antioxidant vitamins in lung cancer. Clin Chem Lab Med 2008;46:107–12. https://doi.org/10.1515/cclm.2008.010 . DOI
Lorente, L, Martin, MM, Gonzalez-Rivero, AF, Perez-Cejas, A, Caceres, JJ, Perez, A, et al.. DNA and RNA oxidative damage and mortality of patients with COVID-19. Am J Med Sci 2021;361:585–90. https://doi.org/10.1016/j.amjms.2021.02.012 . DOI
Liu, X, Deng, K, Chen, S, Zhang, Y, Yao, J, Weng, X, et al.. 8-Hydroxy-2’-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk J Med Sci 2019;49:93–100. https://doi.org/10.3906/sag-1807-106 . DOI
Turski, WA, Wnorowski, A, Turski, GN, Turski, CA, Turski, L. AhR and Ido1 in pathogenesis of COVID-19 and the “systemic AhR activation syndrome” translational review and therapeutic perspectives. Restor Neurol Neurosci 2020;38:343–54. https://doi.org/10.3233/RNN-201042 . DOI
Kielian, M. Enhancing host cell infection by SARS-CoV-2. Science 2020;370:765–6. https://doi.org/10.1126/science.abf0732 . DOI
Kyrou, I, Randeva, HS, Spandidos, DA, Karteris, E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Targeted Ther 2021;6:21. https://doi.org/10.1038/s41392-020-00460-9 . DOI
Katopodis, P, Kerslake, R, Davies, J, Randeva, HS, Chatha, K, Hall, M, et al.. COVID-19 and SARS-CoV-2 host cell entry mediators: expression profiling of TMRSS4 in health and disease. Int J Mol Med 2021;47:64. https://doi.org/10.3892/ijmm.2021.4897 . DOI
Wild, JRL, Staton, CA, Chapple, K, Corfe, BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012;93:81–103. https://doi.org/10.1111/j.1365-2613.2012.00810.x . DOI
Gudowska-Sawczuk, M, Mroczko, B. The role of neuropilin-1 (NRP-1) in SARS-CoV-2 infection: review. J Clin Med 2021;10:2772. https://doi.org/10.3390/jcm10132772 . DOI
Krcmova, L, Solichova, D, Melichar, B, Kasparova, M, Plisek, J, Sobotka, L, et al.. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta 2011;85:1466–71. https://doi.org/10.1016/j.talanta.2011.06.027 . DOI
Cermanova, M, Melichar, B, Solichova, D, Blaha, M, Blaha, V, Blazek, M, et al.. Urinary neopterin and microalbuminuria in patients treated by low-density lipoprotein apheresis. Pteridines 2005;16:174–83. https://doi.org/10.1515/pteridines.2005.16.4.174 . DOI
Cervinkova, B, Kujovska Krcmova, L, Sestakova, V, Solichova, D, Solich, P. A fully validated bioanalytical method using an UHPLC–MS/MS system for quantification of DNA and RNA oxidative stress biomarkers. Anal Bioanal Chem 2017;409:3611–21. https://doi.org/10.1007/s00216-017-0301-2 . DOI
Urbanek, L, Solichova, D, Melichar, B, Dvorak, J, Svobodova, I, Solich, P. Optimization and validation of a high performance liquid chromatography method for the simultaneous determination of vitamins A and E in human serum using monolithic column and diode-array detection. Anal Chim Acta 2006;573–74:267–72. https://doi.org/10.1016/j.aca.2006.02.032 . DOI
Plisek, J, Kujovska Krcmova, L, Aufartova, J, Morales, TV, Esponda, SM, Oros, R, et al.. New approach for the clinical monitoring of 25-hydroxyvitamin D3and 25-hydroxyvitamin D2by ultra high performance liquid chromatography with MS/MS based on the standard reference material 972. J Separ Sci 2013;36:3702–8. https://doi.org/10.1002/jssc.201300553 . DOI
Skala, M, Svoboda, M, Kopecky, M, Kocova, E, Hyrsl, M, Homolac, M, et al.. Heterogeneity of post-COVID impairment: interim analysis of a prospective study from Czechia. Virol J 2021;18:73. https://doi.org/10.1186/s12985-021-01546-8 . DOI
Pikner, R. Jaká má být hladina vitaminu D a doporučené dávkování? Postudium. https://postudium.cz/mod/data/view.php?d=13&mode=single&page=263&rid=178&filter=1 [Accessed 13 Nov 2023].
Perez-Lopez, FR, Brincat, M, Erel, CT, Tremollieres, F, Gambacciani, M, Lambrinoudaki, I, et al.. EMAS position statement: vitamin D and postmenopausal health. Maturitas 2012;71:83–8. https://doi.org/10.1016/j.maturitas.2011.11.002 . DOI
Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, Gordon, CM, Hanley, DA, Heaney, RP, et al.. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911–30. https://doi.org/10.1210/jc.2011-0385 . DOI
Stuetz, W, Weber, D, Dolla, M, Jansen, E, Grubeck-Loebenstein, B, Fiegl, S, et al.. Plasma carotenoids, tocopherols, and retinol in the age-stratified (35–74 years) general population: a cross-sectional study in six European countries. Nutrients 2016;8:614. https://doi.org/10.3390/nu8100614 . DOI
Biomedica Medizinprodukte GmbH . Values of apparently healthy individuals – English. https://www.bmgrp.com/wp-content/uploads/2019/02/BI-20409-total-soluble-Neuropilin-ELISA-190108.pdf [Accessed 13 Nov 2023].
Albahrani, A, Greaves, RF, Ward, G, Fitzpatrick, M, Harrower, T. Vitamin A and E gender and age stratification in adults. Clin Chem Lab Med 2019;58:e79–82. https://doi.org/10.1515/cclm-2019-0823 . DOI
Tenforde, MW, Self, WH, Adams, K, Gaglani, M, Ginde, AA, McNeal, T, et al.. Association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA 2021;326:2043–54. https://doi.org/10.1001/jama.2021.19499 . DOI
Gustine, JN, Jones, D. Immunopathology of hyperinflammation in COVID-19. Am J Pathol 2021;191:14–17. https://doi.org/10.1016/j.ajpath.2020.08.009 . DOI
Mohan, M, Cherian, JJ, Sharma, A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog 2020;16:e1008874. https://doi.org/10.1371/journal.ppat.1008874 . DOI
Nielsen, NM, Junker, TG, Boelt, SG, Cohen, AS, Munger, KL, Stenager, E, et al.. Vitamin D status and severity of COVID-19. Sci Rep 2022;12:19823. https://doi.org/10.1038/s41598-022-21513-9 . DOI
Saldmann, A, Stoclin, A, Hamada, SR, Cholley, B, Houillier, P, Baron, S, et al.. 25-Hydroxyvitamin D concentrations in COVID-19 patients hospitalized in intensive care unit during the first wave and the second wave of the pandemic. Clin Chem Lab Med 2021;59:e255–8. https://doi.org/10.1515/cclm-2021-0207 . DOI
Orchard, L, Baldry, M, Nasim-Mohi, M, Monck, C, Saeed, K, Grocott, MPW, et al.. Vitamin-D levels and intensive care unit outcomes of a cohort of critically ill COVID-19 patients. Clin Chem Lab Med 2021;59:1155–63. https://doi.org/10.1515/cclm-2020-1567 . DOI
Carvalho, MC, Silbiger, VN, Ribeiro, KD, Araujo, JK. Vitamin A and vitamin E in SARS-CoV-2 Infection: a systematic review. 2022:1–13. https://doi.org/10.21203/rs.3.rs-2139276/v1 . DOI
Toledano, JM, Moreno-Fernandez, J, Puche-Juarez, M, Ochoa, JJ, Diaz-Castro, J. Implications of vitamins in COVID-19 prevention and treatment through immunomodulatory and anti-oxidative mechanisms. Antioxidants 2021;11:5. https://doi.org/10.3390/antiox11010005 DOI
Caruso, R, De Chiara, B, Campolo, J, Verde, A, Musca, F, Belli, O, et al.. Neopterin levels are independently associated with cardiac remodeling in patients with chronic heart failure. Clin Biochem 2013;46:94–8. https://doi.org/10.1016/j.clinbiochem.2012.10.022 . DOI
Solichova, D, Melichar, B, Klejna, M, Juraskova, B, Kralovska, L, Blaha, V, et al.. Fluorimetric determination of the levels of urinary neopterin and serum thiobarbituric acid reactive substances in the nonagenarians. Talanta 2003;60:459–65. https://doi.org/10.1016/s0039-9140(03)00073-0 . DOI
Shepheard, SR, Karnaros, V, Benyamin, B, Schultz, DW, Dubowsky, M, Wuu, J, et al.. Urinary neopterin: a novel biomarker of disease progression in amyotrophic lateral sclerosis. Eur J Neurol 2022;29:990–9. https://doi.org/10.1111/ene.15237 . DOI
Halim, AA, Adawy, Z, Sayed, M. Role of neopterin among COPD patients. Egypt J Chest Dis Tuberc 2016;65:23–7. https://doi.org/10.1016/j.ejcdt.2015.11.010 . DOI
Reibnegger, G, Huber, LA, Jürgens, G, Schönitzer, D, Werner, ER, Wachter, H, et al.. Approach to define “normal aging” in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech Ageing Dev 1988;46:67–82. https://doi.org/10.1016/0047-6374(88)90115-7 . DOI
Oh, JS, Seo, HS, Kim, KH, Pyo, H, Chung, BC, Lee, J. Urinary profiling of tryptophan and its related metabolites in patients with metabolic syndrome by liquid chromatography-electrospray ionization/mass spectrometry. Anal Bioanal Chem 2017;409:5501–12. https://doi.org/10.1007/s00216-017-0486-4 . DOI
Sousa, A, Ribeiro, C, Gonçalves, VMF, Barbosa, J, Peixoto, B, Andrade, A, et al.. Development and validation of a liquid chromatography method using UV/fluorescence detection for the quantitative determination of metabolites of the kynurenine pathway in human urine: application to patients with heart failure. J Pharm Biomed Anal 2021;198:113997. https://doi.org/10.1016/j.jpba.2021.113997 . DOI
Valdiglesias, V, Marcos-Pérez, D, Lorenzi, M, Onder, G, Gostner, JM, Strasser, B, et al.. Immunological alterations in frail older adults: a cross sectional study. Exp Gerontol 2018;112:119–26. https://doi.org/10.1016/j.exger.2018.09.010 . DOI
Zinellu, A, Sotgia, S, Deiana, L, Talanas, G, Terrosu, P, Carru, C. Simultaneous analysis of kynurenine and tryptophan in human plasma by capillary electrophoresis with UV detection. J Separ Sci 2012;35:1146–51. https://doi.org/10.1002/jssc.201200021 . DOI